O,
Y=/l
RN/l
G
GG
G
_Lomrag ||

COMPUTER

DISK OPERATING SYSTEM

NOTICE

The information contained in this manual is subject to change
without notice.

COMPAQ Computer Corporation shall not be liable for technical or
editorial omissions made herein; nor for incidental or consequential
damages resulting from the furnishing, performance, or use of this
material. |

This document contains proprietary information protected by copy-
right. All rights are reserved. No part of this document may be
photocopied or reproduced in any form without prior written
consent from COMPAQ Computer Corporation.

Copyright © 1982, 1983
by
COMPAQ Computer Corporation

The software described in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms of the
agreement. It is against the law to copy MS-DOS™ onto cassette tape, disk, diskette, or any other
medium for any other purpose than the purchaser’s personal use.

Copyright © 1981
by
Microsoft, Incorporated

MS-DOS™ and EDLIN™ are trademarks of Microsoft, Incorporated.

DISK OPERATING SYSTEM REFERENCE GUIDE

First Edition (December 1982)
Second Edition (May 1983)
Third Edition (August 1983)
Assembly #100004-001
Text Subassembly #0340-100321-001

COMPAQ Computer Corporation

etz
e
ez e
e
e G
G
comeag||

DISK OPERATING SYSTEM

EEEEEEEEEEEEEE

SCOPE AND PURPOSE OF THE
DISK OPERATING SYSTEM -
REFERENCE GUIDE

This manual presents the capabilities of the COMPAQ Computer disk
operating system (DOS). This system permits you to create, edit,
link, debug, and execute programs.

Reading and firmly understanding the material in the COMPAQ
Portable Computer OPERATIONS GUIDE is crucial to your under-
standing of this manual. Much of the critical information presented
in that manual is not covered in this text.

iv

ORGANIZATION OF THIS MANUAL

Chapter 1, INTRODUCTION TO THE DISK OPERATING SYSTEM
(DOS): This chapter describes DOS in terms of its functional use.

Chapter 2, SYSTEM RESOURCES: This chapter provides back-
ground information about system requirements for implementation
of DOS.

Chapter 3, DOS COMMANDS: Presents detailed descriptions of the
DOS commands. The discussion covers the following topics: general
command parameters, batch processing, and specific DOS com-
mands.

Chapter 4, EDLIN: This chapter gives a detailed explanation of
commands used to create, alter, and display source language files
and standard text files.

Chapter 5, DEBUG: The objective of this chapter is to arm you with
the commands and understanding of the DOS DEBUG program. This
section discusses how to monitor and control the execution of a
program that needs debugging.

Chapter 6, LINK: The guidelines found in this chapter assist you in
linking various programs together to enlarge the potential of your
applications.

Appendices: The various appendices are intended for reference in
the use of DOS. Information includes messages generated by the ter-
minal, general technical information, diskette space allocation, sys-
tem interrupts, and more.

ASSOCIATED DOCUMENTATION

From time to time, you may wish to refer to one of the following
system documents:

OPERATIONS GUIDE (#100000-001): A comprehensive guide to
user orientation. This manual provides an introduction to DOS
operations, BASIC programming, user diagnostics, and various op-
tions.

BASIC REFERENCE GUIDE (#100005-001): A guide to programming
in the BASIC language. This manual provides user orientation to
special editing keys, the filing system, constants, variables, and
miscellaneous expressions.

TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION TO THE DISK OPERATING SYSTEM (DOS)
1-1. INTRODUCTION. ittt et e et e e e e 1-1
1-2. FEATURES AND BENEFITS OF COMPAQ COMPUTER
DK s s snwsn ssmune s 5 amsniq SEENs 4 e0EH &5 5o 1-2
Device Independent Input/Output 1-2
Advanced Error-Recovery Procedures 1-2
Flexible File Characteristics. 1-2
Fast, Eiticient File SITUCTITO. o v ¢ s sn v s v siww i 5 5 5im s 1-2
No Need to Log in Diskettes. 1-3
Time and Date Stamps., 1-3
1-3. PROVIDED SOFTWARE. 1-4
1-4. APPLICATIONS PACKAGES <. 68 snme s s ninnwss soe 1-6
CHAPTER 2
— SYSTEM RESOURCES
2-1. DISKETTES AND DISKETTE SPACE .. s s vomsv s ses 2-1
2-2, DOSDISKETTEBACK-UP, : c s s isvsnsiosnnnsisinns 2-3
With a Dual-Drive System 2-3
With a Single-Drive System. 2-4
The Default Drive 2-5
CHAPTER 3

DOS COMMANDS

8-1. INTRODUGTION: s s covs s s smndss naddissnesssins 3-1
Rulesof Syntax............ 3-1

Reserved Device Names.c i i i iiinn... 3-3

Wild Card Characters. oo i i i i et i i e 3-4

3-2. DOS COMMAND RELATIONSHIPS................ 3-8

o File Name Syntaxcvviiiiinnneennnnnn. 3-8
Execution and Control of Commands............. 3-8

Drive Control. o i e 3-9

oyntex Notation, s see:ssasmpssswmus s mmes o5 58w 3-9

3-3. BATCHPROCESSING iy 3-10

The AUTOEXEC.BAT File 3-10
Executing a .BAT File With _‘
Dummy Parameterscciiiivin... 3-11
CHKDSK (CHECK DISK) Command 3-13
COMP (COMPARE FILES) Command 3-16
COPY Commant s s s s sunsssnani i shas smhs 6 s msd s bsns 3-18
DATE Commandt ittt 3-24
DEL (DELETE) Commandoiuiiuuteeeerennn 3-26
DIR. (DIRECTORY) COMMAT . cmm s » 5o s smsv s mum s ssems 3-27
DISKCOMP (DISKETTE COMPARE) Command. 3-30
DISKCOPY (COPY DISKETTE) Command 3-33
ERASE Commandttt et 3-36
EXE2BIN Commant. ; s sssssonnkis ond i o om 8§ e s 655 a@ s 3-37
FORMAT Command.i ittt 3-39
MODE Command.uv ittt ittt e 3-42
PAUSE 'COTMPARG. s s nan s s nomumnaie ¢ siens s 5085 6 09 s s 3-46
REM (REMARK) Commandcoiiiieennnnn 3-48
REN (RENAME) Commandccouiiiinn... 3-49
SYS (SYSTEM) Command oo v ittt it et inennnn.. 3-50
TIME 'Command. s 6 cas s s nads 656 66 6a®eibpsnis insais 3-51
TYPE COMIDBNE . v o o ovo v s simins simmio s smmswomnss e s s 3-52
3-4. SUMMARY OF DOS COMMANDS 3-53
CHAPTER 4
EDLIN
4-1. INTRODUCTION TOEDLIN0viiieieerennnn 4-1
4-2. EDLIN COMMANDS e 4-3
Intraline Commands 4-3
Multiple and Control (CTRL) Keys. 4-4
BLIGEY G iomm i 5w 5w o0 b om0t 6 ol e i B oo e 0w o g o 6 4-6
F2 KeY .. ittt ittt ittt esnosnnnonnosoncananass 4-7
PO RO o c s nmn s vpims somss 8565 o6 sspanspomssnenmss 4-8
DELDELETE] KOV o o i 5,506 5 hnas s hme s osmd i bmmn s ommd s 4-9
FA Key ..o e e e e e 4-10
ESC (ESCAPE) KeY . . v vttt ettt e e e e e e 4-11 =~
INS (INSERT) KEV & « s cssss sisinssaons imonssanss aunss 4-12
BO RO i camcs soims 5 homm s o o 8 oo i 5ol d 5 Blaiom & o ol o o ot omeome B 4-13

Interline Commandsouiieinen.. 4-15

APPEND (A)Commandcuit it nnn. 4-17
DELETE (D) Command0ttiiiiunnnne.. 4-18
EINT Comifiand s s s ome s sons il s s pomss 505 d 5 4-20
END (E] Commanid. i.. o« o 5 6m s bmmm s 6 oiim 5 6058 m 6 b iomon s oo 4-22
INSERT (I) Commandc.cuuiiueennnennnnn 4-24
LIST (L) Commanduuuitttiiinnennnnneenn. 4-29
QUILT [)) Command: : s ssw s anmis snme i anssssuns s s 4-32
REPLACE (R)Commandc0iiiiiuunueennn 4-33
SEARCH (S)Commandc.tieeeeeenen.. 4-36
WRITE [W) 'Comanane. . . ccx:susmas smms sanmssanss s 4-39
4-3. EDLIN ERROR MESSAGES 4-40

Errors When Invoking EDLIN. 4-40

Fivors Whils BAIHRE ; s vew s ssmssnnmss snas s wa 4-41

CHAPTER 5
DEBUG

5-1. INTRODUCTION TODEBUG.coo.... 5-1
5-2. STARTING DEBUGttt 5-2
5-3. DEBUG COMMANDS .. cnsnssscesssmmssnassss 5-3

DEBUG Commands Summary 5-3

Parameters.ttt 5-4
COMPARE (C)Command.c.cut ittt ininnneenn. 5-8
DUMP (D) Gommmand. « « s s sss s566 ssp@ss oo s o865 5 63 5-9
ENTER (E) Commandcutiiiiinneeeenn 5-12
FILL (F)Commandcuotiittiinrmnneennnnn 5-14
GC) (G ICHIIIATL o9 s smme s 9uaE § SREEELSREET B5ES &5 5-15
HEX (H)Command i snsiiasis pueii mames bnwes i 5-17
INPUT () Commandcuiiuiiurennnennnns 5-18
LOAD (L)Commandc0iutiiiinnennennn. 5-19
MOVE N COTHmand. - ; s sas i s 566 s s wns s Ban s bhpss s 5-21
NAME (N) Command.tiiiiiineeennn 5-22
OUTPUT (O)Command.ouiiiiieeeeennnn. 5-25
QLT (Q) CoOmiana. « o v s s s sscms s 8 @6 s s @aa 5 5595 & 95 5-26
REGISTER (R)Command.coviiiinnneeennn 5-27
SEARCH (S)Commandttt 5-30
TRACE (T) Commandcoiiiiiinnnnnnn. 5-31
IINASSEMBLE () Command . s s 6 wsmsiswcs oo smasss 5-33

WRITE (W) Command . . « .« v v vv e et e eee e eeen s 5-36

5-4. DEBUG ERROR MESSAGES. 5-38
CHAPTER 6
LINK
G- INBERVEEW . . sc0 svmi s nmbii s b 5 50 b i 6 e 8 5 6 6-1
Capabilities of the Linker Utility 6-1
LINK Operatiofi SUmMArY . . s ov s s sssnsssnios s smw s 6-1
DOHMItIONS: « s s s v v s nans s aomd s pans s 5T s 5 GaH s 6-3
6-2. COMBINING AND ARRANGING SEGMENTS 6-4
6-3. FILESUSED BY LINK. 6-7
LINKINpUt FIl68 c s s s ssvsssnmssanss s sanss wnie 6-7
LINK Output Files., 6-8
VMTMP File. ey 5 v 6-8
0, RUNNING EINK ; socs nasus s sous rasss Lauh i 0oss 6-9
Commeand Prompls . : .o issnanissnsss anaiimnss 6-9
Switches 6-11
Invoking LINK 6-14
Gormamaneg Characters. . « s vs s s svnmsnnmss sans s 6-16
6-5. ERROR MESSAGES. ittt i 6-20
APPENDIX A

DOS FILE CONTROL BLOCK (FCB) DEFINITION

APPENDIX B
DOS INTERRUPTS AND FUNCTION CALLS

APPENDIX C
DISK ERRORS

APPENDIX D
INDEX

LIST OF FIGURES

2-1.
6-1.

Allocation of File Space on a Diskette.

LINK Operation Block Diagram

LIST OF TABLES

6-1.
6-2.

Set and Clear Codes for Flags 5-28
Command Prompt Summary.........cccovveenne. 6-15
Linker Switch Parameters 6-15
Reserved Dev Names.coii ... 3-3

Xii

Chapter 1 1-1

1-1. INTRODUCTION

This manual gives an overview of the COMPAQ Computer disk
operating system (DOS), provided on the DOS diskette packaged in
the OPERATIONS GUIDE. It describes the operator interface, the file
system, the command structure, and the available commands. It also
contains chapters on:

EDLIN.COM, the DOS line editor
DEBUG.COM, the DOS debug utility
LINK.EXE, the LINK linker

1-2 DOS

1-2. FEATURES AND BENEFITS OF
COMPAQ COMPUTER DOS

Device Independent Input/Output (I/O)

COMPAQ Computer DOS simplifies I/O to different peripheral devic-
es by assigning a reserved filename to each device. These names are
built-in to DOS and are detected by the DOS file system. Programs
designed only for disk file I/O can receive input from the keyboard or
send output to the video display or line printer.

Advanced Error-Recovery Procedures

COMPAQ Computer DOS does not necessarily require rebooting
when diskette errors occur. If a diskette error occurs at any time
during any program, DOS retries the operation three times. If the
operation cannot be completed successfully, DOS returns an error
message, then waits for you to enter a response. You can attempt to
recover from the error before rebooting the operating system.

Flexible File Characteristics

In COMPAQ Computer DOS, there is no practical limit on file or disk
size.

DOS remembers the exact physical end-of-file marker. Should a file
be opened with a logical record length greater than the physical
record length, DOS remembers exactly where the file ends to the
byte, rather than rounded to 128 bytes.

Fast, Efficient File Structure

COMPAQ Computer DOS employs a highly-efficient diskette struc- "

ture which eliminates the need for manual file size extension

e
- i

Chapter 1 1-3

operations, minimizes access to the directory track, and provides for
duplicate directory information and verifications after writes.

No Need to Log in Diskettes

As long as no file is currently being written, diskettes can be
exchanged without logging in. One benefit of this feature is that the

DOS debug utility, DEBUG.COM, can be used without reloading for
different programs on different diskettes.

Time and Date Stamps

If the current date and time are entered during system start-up, DOS
automatically records the correct time and date of file activity during
the session.

1-4 DOS

1-3. PROVIDED SOFTWARE

Some of the software provided with the COMPAQ Computer disk |
operating system is described below. Detailed information of other
DOS commands is given in Chapter 3.

CHKDSK.COM is a command used to check and verify the contents

of a diskette. It is further described in Chapter 3, DOS COM-
MANDS.

COMMAND.COM is the command interpreter used to interface
between the operator and the underlying operating system. It allows
you to perform file management functions, such as renaming and
deleting, as well as loading and excuting programs.

DEBUG.COM is a debug utility that provides a controlled testing
environment for executable object files. DEBUG.COM is further
described in Chapter 5, DEBUG.

EDLIN.COM is the DOS line editor. Intraline editing is performed
using the special editing keys. EDLIN.COM is further described in
Chapter 4, EDLIN.

EXE2BIN.COM is used to convert .EXE files to .COM files. In general,
only assembly language programs that have been specially formulat-
ed may undergo such conversions. EXE2BIN.COM is further de-
scribed in Chapter 3, DOS COMMANDS.

FORMAT.COM is used to format diskettes so that they can be used
with DOS. FORMAT.COM is described in Chapter 3, DOS COM-
MANDS.

LINK.EXE is the LINK linker used to link object files and object
libraries to create executable .EXE files. LINK.EXE is further de-
scribed in Chapter 6, LINK.

Chapter 1 1-5

IOSYS.COM is the lowest level of the DOS operating system,
interfacing to all I/O devices. It is a DOS hidden file and does not
show up when a directory command is executed. I0.SYS is automati-
cally loaded into memory when the system is booted up.

MSDOS.COM is the heart of the operating system where most
management of system resources takes place. DOS.SYS is intimately
tied to COMMAND.COM and I0.SYS. DOS.SYS is a hidden file and
does not show up when a directory command is executed. DOS.SYS
is automatically loaded into memory when the system is booted up.

SYS.COM is used to transfer DOS.SYS and I0.SYS from a system
diskette to a formatted diskette that does not contain the operating
system. It is further described in Chapter 3, DOS COMMANDS.

1-6 DOS

1-4. APPLICATIONS PACKAGES

When you purchase applications packages, such as VisiCalc™, the
manufacturer supplies you with complete instructions for use of the

program. Should those instructions conflict with the instructions in
this manual, use theirs.

Chapter 2 2-1

2-1. DISKETTES AND DISKETTE
SPACE

Space on a particular diskette is divided into files, as shown in
Figure 2-1.

Diskette Space

e
|
Drives A:
|
Files f f

Figure 2-1. Allocation of File Space on a Diskette.

Each double-sided, double-density diskette used with the COMPAQ
—- Computer contains 320 Kbytes of storage space. The DOS diskette, or
any copy of it, has its space divided into five parts:

The Boot Program (Side 0, Track 0, Sector 1)

This sector contains the boot program which the hardware
loads on power up or when NALT+DEL is pressed. It will load
the rest of DOS.

Two copies of the File Allocation Table (Side 0, Track 0, Sectors
2-3)

These tables are used to allocate disk space to files. DOS
maintains these areas.

Directory (Side 0, Track 0, Sectors 4-8 and Side 1, Track O,
Sectors 1-2)

The directory contains information about each file on the
diskette, including the file specification, size of the file, and the
time and date of last modification.

2-2

DOS

IOSYS.COM (Side 1, Track 0, Sectors 3-6)

e

This is the interface program used by DOS to communicate I/O
information to the COMPAQ Computer hardware system. "

MSDOS.COM (Side 1, Track 0, Sectors 7-8; Side 0, Track 1,
Sectors 1-8); and side 1, Track 1, Sectors 1-4)

This is where the operating system resides.
Data Area (Starts Side 1, Track 1, Sector 5)

The greater portion of diskette space is reserved for the contents
of files. An individual file does not necessarily reside in con-
tinuous sectors on the diskette. The file allocation table is used to
allocate diskette sectors to files.

Usually the COMMAND.COM program is the first file in the data
area but this is not required.

Chapter2 2-3

2-2. DOS DISKETTE BACK-UP

The DOS diskette is essential to operation. Most importantly, it has a
protective adhesive tab over the write-protect notch and should not
be written to or used for storage.

For these reasons, it is very important that the diskette be backed up
with one or more copies, and the original stored in a safe place
where it will not be exposed to static electricity, magnetic fields,
extremes of temperature or humidity, or subjected to excessive
handling or other abuse.

Copies of the DOS diskette can be made using the DISKCOPY

command. DISKCOPY copies the entire diskette onto another
diskette.

With a Dual-Drive System

To copy DOS from the original (source) diskette to the new (target)
diskette using DISKCOPY, enter:

A> DISKCOPY A: B:
The screen displays:
Insert source diskette in drive A:
Insert target diskette in drive B:
Strike any key when ready
If the diskettes are not already in place, insert them. Once they are

inserted, press any key to begin. Blocks of data will be transferred
from the source diskette to memory and then moved to the target

2-4 DOS

diskette. This process is repeated until the copy is complete. When
finished, the screen displays:

Copy complete

Copy another? (Y/N)

Press N to terminate the copy session.

With a Single-Drive System

The DISKCOPY command is the same in principle whether your
system has one disk drive, or two. The chief difference is one of time
and effort. When you enter:

A> DISKCOPY A: B:
the screen displays:

Insert source diskette in drive A:
Strike any key when ready.

Insert the source diskette if you have not already done so. Press any
key. The computer reads as much information as it can accommao-
date into memory, then requests:

Insert the target diskette in drive A:
Strike any key when ready

Replace the DOS diskette in the drive with the new diskette. Press
any key. The data taken from the DOS diskette is transferred from
memory to the new diskette, then the system asks for the source
diskette again. This process continues, copying from and onto
alternating diskettes, until the copy is complete. The screen dis-

plays:
Copy complete

Copy another ? (Y/N)

Chapter 2 2-5

The same procedures apply to all commands and activities requiring
two diskettes, such as DISKCOMP (to compare diskettes). It is a good
idea to compare the DOS diskette and the new copy at this time.
Enter:

A> DISKCOMP A: B:

If you have one disk drive, you will be directed to exchange diskettes
in the drive as in the DISKCOPY procedure. If you have two disk
drives, the switching is automatic. When the comparison is com-
plete, the screen displays:

Diskettes compare ok
Compare another? (Y/N)

The Default Drive

At system start-up, the prompt is always A>, indicating the default
drive. To specify another, simply type the desired specifier, followed
by a colon. Press ENTER.

A>B:
Note the new prompt identifies the default drive.

B>

Reading from, or writing to, the diskette in Drive B: does not change
the default drive. For example:

A>DIR B:

displays the directory on the diskette in Drive B:, but the system
returns to A> for its next command.

A>DISKCOPY A: B:

2-6 DOS

copies the contents of the diskette in Drive A: (or diskette A:) onto
the diskette in Drive B: (or diskette B:), but it does not change the
default drive. -

You can also copy the contents of the diskette in Drive B: to A: by
typing:

A>DISKCOPY B: A:
This does not change the default drive, either. To repeat, only:

A>B:
or
B>A:

changes the default drive.

P

Chapter 3 3-1

3-1. INTRODUCTION

COMMAND.COM serves as the system command interface between
the operating system and operator input. Command interpretation
begins when COMMAND.COM scans the operator input for a legal
command. COMMAND.COM identifies, interprets, and executes
entered commands.

DOS commands are either internal or external. Internal commands
are resident in memory as part of COMMAND.COM, and are loaded
into memory when the operating system is booted up.

External commands reside on diskettes as program files. Since these
commands must be read before execution, a slight delay will occur.

Filenames with extensions of .COM and .EXE are considered to be
external commands. They permit you to develop custom applica-
tions.

External commands are executed by entering the name of the file
without the .COM or .EXE extension. User-created programs in most
languages are .EXE files. .EXE files can usually be converted to .COM
files with the command, EXE2BIN.

Rules of Syntax

The following syntax rules indicate how the DOS commands must
be formatted:

Command Name An extension of .COM or .EXE indicates an
external command to DOS. When you enter an
external command, do not include the file-
name extension.

Parameters Parameters included in DOS commands speci-
fy additional information to the system. While
some parameters are required, some remain

3-2

DOS

optional. Use the following parameters in user
DOS command statements:

Parameter: Definition:

d: Specifies a disk drive. Identify
the drive letter and follow it with
a colon (A: or B:).

filename Specifies the name of the file. The
file name includes the filename
(which can be a maximum of
eight characters). and an optional
extension (with as many as three
letters). See the .ext parameter.

The following are valid characters in file
names:

AZ $ & # @ !

0-9 % ’ () .
< > { } _
\ N~)

Any other characters are invalid, and will
cause the file name to be truncated (cut short).
See the Reserved Device Names section in this
chapter.

.ext You can further catagorize your
files into smaller, more managea-
ble pieces. You can do this
through the use of extensions.
These extensions consist of a per-
iod (.) followed by a maximum of
three characters. Place the exten-
sions immediately after the file-
name (for example, DOSMAN.1,

Chapter 3 3-3

which can stand for the DOS
manual, Section 1).

The same characters that are
valid for filenames are valid for
extensions (see filename). Any
other characters are invalid.

When referring to a filename with
an extension, always include the
extension in the file name; other-

wise, DOS is unable to locate the
file.

Reserved Device Names

DOS reserves the names listed in Table 3-1 for specific system
input/output (I/0O) devices:

Table 3-1.

Reserved Device Names
Reserved Device:

Name:

CON: Retfers to keyboard input and screen output.To end CON:
when using it as an input device, press F6 and then
ENTER to create the end-of-file (EQF).

AUX: Refers to the first comunications adapter port.

com

LPT1; Refers to the line printer (output device only).

PRN:

NUL: Refers to a dummy (nonexistent) device used for testing

various applications. Use NUL: when you do not want to

3-4 DOS

create a particular file, but the syntax of a command
requires an input or output filename.

NOTE:

« Reserved device names may be used in place of file names.

* Drive specifiers or extensions are ignored when used with these
device names.

* A colon following the reserved device name is optional.

Wild Card Characters

Use of the wild card characters, * and ? , provides a short-hand
notation for multiple file applications. These characters may be used
with filenames and their extensions to provide enhanced DOS
command flexibility.

A 7 character in a filename or extension indicates that any valid
character may occupy that position. For example:

DIR BUDYDEPT.’83

lists all directory entries (in the default drive) beginning with BUD,
having any next character, and followed by DEPT, with an extension
of ’83.

The following files might be listed by this DIR command:

BUD1DEPT.’83
BUD2DEPT.’83
BUD3DEPT.’83

This listing could indicate that departments 1, 2, and 3 have their

1983 budgets listed on your diskette.

Chapter 3 3-5

The use of the * character in a filename or extension indicates that
any valid character may occupy that position and all remaining
positions, including extensions. For example:

DIR D115%*.’83

lists all directory entries (in the default drive) beginning with D115,
having any next characters, with an extension of ’83.

The following files might be listed by this DIR command:

D115LAB.’83
D115EXP.’83
D115FCST.’83

This listing could indicate that department 115 has labor (LAB),
expense (EXP) and monthly forecast (FCST) reports for 1983 (’83)
listed on this diskette.

The following are example uses of the ? and * characters:
Example 1:

To delete the directory entries for all files named FORECAST on
Drive A: (regardless of extension), use the DEL command like this:

DEL A: FORECAST.???
or

DEL A: FORECAST.*
The entries deleted might look like this:

FORECAST.115
FORECAST.117
FORECAST.250
FORECAST.300

3-6 DOS

The files listed might indicate which departments have submitted
their monthly forecasts.

Example 2:
To list the directory entries for all files on Drive B: (regardless of file
names) with an extension of JUN, enter:

DIR B: ?7?77?77.JUN
or
DIR B: *JUN
The entries listed might look like this:

ACCTSREC.JUN

ACCTSPAY.JUN

FORECAST.JUN

EXPENSES.JUN
This listing might indicate what monetary figures have been entered
for the month of June.

Example 3:
To list the directory entries for all files on Drive B: beginning with
100, and with extensions beginning with 1Q), enter:

or
DIR B: 100+.1Q*

The entries listed might indicate for example, that department 100
has the following files:
100EXP.1Q (expense totals for 1QQ) .
100MAN.1Q (manpower requirement totals
for 1Q)

Chapter 3 3-7

100MAN.1QQJ (manpower requirements for Jan)
100MAN.1QF (manpower requirements for Feb)
100MAN.1QM (manpower requirements for Mar)

3-8 DOS

3-2. DOS COMMAND
RELATIONSHIPS

File Name Syntax

The three parts of a complete file name (d:filename.ext) must not
be separated by characters other than the colon (:) and period (.).

Filenames are not required to have extensions. If a filename has
an extension, that extension must always be included when
referring to the file.

Wild card filenames and device names are valid as command
parameters only.

Execution and Control of Commands

Commands are effective only after pressing the ENTER key.

To abort a command during execution, press ~BREAK. The
command cancels as soon as the system tries to read from the
keyboard or display a character on the screen.

To suspend output of a command, press ~ANUM LOCK. This is
particularly valuable when the command will produce a large
output.

NOTE: In this book, there is a special symbol used to indicate control
characters. For example, if the letter T is to be used as a control
character, it is written as \T. The caret (") superscript always means
that you must first press and hold down the CTRL key, and then
press the designated character key. /T is read aloud as ‘“Control T”.

Chapter 3 3-9

Drive Control

~ The prompts A> and B> indicate which drive is being used as the
default drive.

Syntax Notation

All DOS commands in this manual will be formatted for ease of use
as follows:

« Commands and file names may be typed in either upper- or
lower-case.

» Items in brackets, [], are optional.

* Punctuation such as commas, equals signs, question marks,
colons, or slashes, must be included where shown.

* You must separate commands and parameters with delimiters. A
delimiter is a space, comma, semicolon, equals sign, or tab. For
example:

DEL Goodfile.rel;badfile.rel
or

COPY fourfile fivefile

A space as a delimiter makes the command easier to read. In this
book, the usual delimiter is a space.

The COMPAQ Portable Computer permits you to make errors, then
recover from those errors without any loss of text. If a typing error is
made, backspace, enter the correction, and continue to input.

3-10 DOS

3-3. BATCH PROCESSING

Type:

Purpose:

Syntax:

Comments:

Internal.

To execute the commands found in the specified file
from the default or designated drive.

[d:] file name [parameters]

Batch files contain one or more commands that DOS
executes one at a time. All batch files must have a
.BAT extension.

When executing a batch file, parameters may be
passed to the filename .BAT file. Passing parameters
permits a single batch file to do similar work with
different data during each execution.

Batch files are created through the use of the DOS line

editor (EDLIN), or by using the COPY command from
the keyboard.

The last command in a batch file may be the name of
another batch file. This technique permits you to
continue processing.

The AUTOEXEC.BAT File

When powered up or restarted, the computer searches for the
AUTOEXEC.BAT file on either the DOS or default diskette. Once
found, the system automatically executes commands found in this

file.

Chapter 3 3-11

For example, you can automatically load BASIC and execute
the program called PAYABLES at power-up by modifying the
AUTOEXEC.BAT file, as follows:

Type:

COPY CON: AUTOEXEC.BAT This statement tells DOS to copy

input from the keyboard to the AU-
TOEXEC.BAT file.

Type:

BASIC PAYABLES This statement is inserted in the
AUTOEXEC file.

Press F6, and then

press ENTER. The system displays:
1 File(s) copied indicating the termi-
nation of the COPY command from
CON; by pressing F6 and ENTER.

NOTE: You can enter either single commands or a series of com-
mands in the AUTOEXEC.BAT file.

When you modify the AUTOEXEC.BAT file, DOS does not prompt
you for the date and time unless you include the DATE and TIME
commands in the AUTOEXEC.BAT file.

Executing a .BAT File With Dummy
Parameters

Consider the following batch file:

REM START TEST BATCH FILE
COPY 9%1 %2
- TYPE 9%2.PRN
TYPE 9,0.BAT

3-12 DOS

To execute the ASMFILE.BAT file and pass the parameters, enter the
batch file name, followed by the parameters to be sequentially
substituted for %1, %2, and so on.

For example, enter:

A> ASMFILE A:MYFILE B:MYPROG

AMSFILE is substituted for 2%0; A:MYFILE, for %1; and B:MYPROG,
for 92.

The result is the same as if you had entered each of the commands
(in MYFILE.BAT) from the console with the following parmeters:

REM START TEST BATCH FILE

COPY A:MYFILE.ASM B:MYPROG.ASM
TYPE B:MYPROG.PRN

TYPE A:ASMFILE.BAT

Remember that the dummy parameter %0 is always replaced by the —
drive specifier, if used, and the file name of the batch file.

NOTE:

A maximum of 10 dummy parameters (%0 through 9%9) may be
specified.

» To use % in a filename within a batch file, specify the % twice. For
example, to specify the file ABC%.EXE, enter the name as
ABC9%%. EXE in the batch file.

Chapter 3 3-13

CHKDSK (CHECK DISK) Command

Type:

Purpose:

Syntax:

Comments:

External.

To scan the directory of the default or designated
drive and check it for consistency.

CHKDSK [d:]

Run CHKDSK occasionally on each diskette to verify
the integrity of the directory structure. If any errors
are found, the appropriate error message is displayed
and corrective action can be attempted.

After the diskette has been checked, CHKDSK dis-
plays error messages, if any, and then a status report.

A sample status report follows:

322560 bytes total disk space
9216 bytes in 2 hidden files

311296 bytes in 8 user files
2048 bytes available on disk

131072 bytes total memory
118688 bytes free

CHKDSK assumes that the diskette being checked is

already installed. On single-drive systems, it is im-

portant that the specified drive is different from the
default (unless checking the DOS diskette itself).

3-14

DOS

If an error is detected, CHKDSK returns one of the
following error messages:

Allocation error for file filename

The named file has a data block allocated to it that
does not exist (that is, a data block number larger
than the largest possible block number). CHKDSK
truncates the file short of the bad block.

Disk not initialized

No directory or file allocation table is found. If files
exist on the diskette, and the diskette has been
damaged, it may still be possible to transfer files to
another diskette to recover data.

Directory error-file: filename

No valid data blocks are allocated to the named file.
CHKDSK deletes the file.

Files cross-linked: filename and filename

The same data block is allocated to both files. No
corrective action is taken. To correct the problem,
first use the COPYcommand to make copies of both
files; then, delete the originals. Review each file for
validity and edit as necessary.

File size error for file filename

The size of the file in a directory isdifferent from its
actual size. The size in the directory is automatical-
ly adjusted to indicate its actual size on the disk-
ette. The amount of useful data may be less than the
size shown because the last data block may not be
used fully. '

Chapter 3 3-15

XXXXXX bytes of disk space freed

Diskette space shown as allocated was not actually
allocated and has been freed.

3-16 DOS

COMP (COMPARE FILES) Command

Type:

Purpose:

Syntax:

Comments:

External.

To compare the contents of one file to those of
another.

NOTE: Use COMP to compare individual files; use
DISKCOMP to compare whole diskettes.

COMP [d:] [filename] [d:] [filename]

The files being compared may exist on the same or
different diskettes. The file names are optional. If they
are omitted, DOS prompts you for the names and
appropriate diskettes. The computer waits for you to
press a key before it begins the comparison.

Since COMP compares the files byte-for-byte, any
unequal bytes result in error messages. Additionally,
the number of bytes that were compared are listed.

An error message might look like this:
Compare error at offset 128

File 1 = 32
File 2 = 20

After 10 unequal comparisons, COMP aborts, processing ends, and
the following message is displayed:

10 Mismatches - aborting compare

Chapter 3 3-17

When sucessfully compared, the screen displays:

Files compare ok
Compare more files? (Y/N)

This permits you to do additional comparisons.

NOTE:

 When the first file name is the same as the second file name, the
specified drives must be different.

* Use of the wild card characters ? and * in the file name do not
cause multiple file comparisons. Only the first file matching each
name is compared.

* The computer does not make a comparison if the file sizes are

different. The computer does ask you if you want to compare more
files.

3-18 DOS

COPY Command

Type:

Purpose:

Syntax:

Comments:

Internal.

To copy a file to the same or another diskette. When
copying to a different diskette, the copied file may be
given a different name, if you prefer. Files being
copied on the same diskette must have different
names.

Concatenation (combining files) may be performed
during the COPY process.

COPY [/A][/B] source filename [/A][/B][d:] destination
filename [/A][/B][/V]

or

COPY [/A][/B] source filename[/A][/B][+source file-
name [/A][/B] [d:] [destination filename]] [/A][/B][/V]

Verify Copy:
The /V parameter causes DOS to verify the copy.

Although errors in recording data are rare, this option
has been provided for transferring critical data.

ASCII/Binary Copy:

Parameters /A and /B indicate the amount of data to
be processed. Each applies to the file names preced-

_—

Chapter 3 3-19

ing it, and to all remaining file names on the com-
mand line until another /A or /B is encountered.
These parameters can have the following meanings:

WHEN USED WITH A SOURCE FILENAME:

/A causes the file to be treated as a text (ASCII) file.
The file’s data is copied up to, but not including,
the first end-of-file (EOF) character found in the
file; the balance of the file is not copied.

/B causes the entire file to be copied.
WHEN USED WITH A DESTINATION FILENAME:

/A causes an EOF marker ("Z) to be added as the
last character of the file.

/B causes no EOF marker to be added.

/A is a default value when concatenation is being
performed (see Option 3, following). /B is the
default when concatenation is not being performed
(see Options 1 and 2).

Wild Card Characters:

The wild card characters ? and * may be used in file name
parameters for both the source and destination filenames. When
using a ? or * in the source filename, the names of the files are
displayed as the files are copied.

3-20 DOS

The COPY command has three format options:
OPTION 1, The Source and Destination File Names Are the Same:

This option is useful when the destination file is to have the same
name as the source file.

Example:

COPY filename d:

In this example, the file is copied to another diskette in the the
specified drive. The destination file name is the same as the source,
because no new name was specified. The computer will not copy a
file to the same diskette without a new name.

OPTION 2, The Source and Target File Names Differ:

This option is used when the copied file is to have a different name
from the source file. For example: sy

COPY source copied
or

COPY source d: copied

In the first example, the source file was copied to create the
destination file on the same diskette. Because the names of both files
are different, the computer assumes the drive to be used is the
default drive.

Example:

COPY MYFCST.’82 B:*.JAN
This example demonstrates how to copy the file MYFCST.’82 from T
the default drive, Drive A:, to the diskette in Drive B:, and rename

the copied file MYFCST.JAN.

Chapter 3 3-21

Reserved device names may be used for the copy operation. Some
examples are:

COPY CON: FILEA
COPY CON: AUX:
COPY CON: LPT1:
COPY FILEA CON:
COPY FILEB AUX:
COPY FILEC LPT1:
COPY AUX: CON:
COPY AUX: LPT1

NUL: may also be used as above.
Option 3, Concatenating (Combining) Files:
You may combine two or more files into one file by adding the

additional files to the end of the first. The date and time recorded in
the result file are the current date and time from when you combined

~ the files.

Concatenation of files is accomplished by listing number of source
files, separated by plus signs, in the COPY command, as shown in
the following format:

COPY [/A][/B] filename [/A][/B] [+filename [/A][/B]] [d:] [filename]
[/A][/B][/V]

Example:
COPY AFILE.XYZ+BFILE+B:CFILE. TXT ONEBIG.FIL

The COPY command now creates the new file, ONEBIG.FIL, on the
diskette in the default drive. AFILE.XYZ, BFILE, and CFILE.TXT (on

Drive B:) have now been added to each other and deposited into the
- ONEBIG.FIL.

If you don’t specify a destination file name, the additional files are
added to the end of the first file.

3-22 DOS

Concatenation is normally performed in text (ASCII) format. To
combine binary files, use the /B parameter. This forces the COPY
utility to use the physical EOF. You may combine ASCII and binary
files through the use of either the /A (ASCII format) or /B (binary
format) parameters.

Example:
COPY A.EXT+B.EXT/B+B:C.EXT/A BIGFILE

An /A or /B parameter takes effect on the file it is placed after, and

applies to all subsequent files on the command line, or until another
/A or /B is found.

You may use the wild card characters ? and * in the file names of
both the source and destination files.

Example:

COPY *.L.ST RESULT.AAA

The result of this example is that all files matching *.LST are
combined into one file called RESULT.AAA.

To enlarge on this concept, the following example combines all files
with the extension of .MAN and .$$$ into one file called
LABOR.FST.

COPY *.MAN+*.$$$ LABOR.FCST

If you attempt to copy a file to the same diskette without a new name,
DOS detects an error and aborts the COPY command. When you are
concatenating, as each source file is found, its name is compared to
the name of the destination file. If the name is the same, the file is
skipped, and the message ‘““Content of destination lost before copy”
is displayed. Further concatenation proceeds normally.

Chapter 3 3-23

To avoid this complication, use the following command:
COPY REF.LST + *LST

The result is that all *.L.ST files, except REF.LST, are appended to the
file REF.LST .

SPECIAL CONSIDERATIONS OF CONCATENATION:

You must remember to include the /B parameter whenever the + sign
is used with nontext (non-ASCII) files.

Example:

COPY B:FORECAST.’83+

In this example, the system copies the file, FORECAST.’83, located
on the diskette in Drive B:, to the default diskette, giving it a new
| date and time.

When you are concatenating, the computer considers the copying
process to be successful if at least one, but not necessarily all, of the
named source files are found. If no source files are found, you will
receive the message:

0 File(s) copied
CHANGING THE DATE OF A FILE NAME:

To alter the date and time during a copy procedure, use a command
like the following:

COPY B:MYFILE.AAA+,, B:

NOTE: The two commas are necessary to define the end of the source
filename because, in the COPY utility, the computer expects to see
another file name after the plus sign.

3-24 DOS

DATE Command

Type:
Purpose:
Syntax:

Comments:

Internal.
To display and set the date.

DATE [mm-dd-yy]

If entered without a parameter, DATE returns with the
message:

Current date is mm-dd-yy
Enter new date:

Press ENTER if you do not want to change the date
shown.

Optionally, the date may be given as a parameter to
the DATE command, as in:

DATE 3-9-81
In this case, no message appears.

The new date must be entered using numerals only;
letters are not permitted. The allowable parameters
are:

mm = 1-12
dd =1-31
yy = 80-99 or 1980-2099

The date, month, and year entries may be separated
by hyphens (-) or slashes (/). DOS is programmed to
change months and years correctly, whether the
month has 31, 30, 29, or 28 days. DOS handles leap
years, too.

Chapter 3 3-25

If the parameters or separators are not legal, DOS
returns the message:

Invalid date
Enter new date:

DATE then waits for entry of a legal date.

3-26 DOS

DEL (DELETE) Command

Type: Internal.

Purpose: To delete specified files from a diskette and from the
diskette directory.

Syntax: DEL filespec

Comments: If the filespec given for DEL is the global *.*, the
prompt “Are you sure?”’ appears. If Y is typed as a
response, then all files are deleted as requested. The
ERASE command is the same as the DEL command.

Chapter 3 3-27

DIR (DIRECTORY) Command

Type:
Purpose:
Syntax:

Comments:

Internal.
To list a directory of the files on a diskette.
[d:]DIR [filespec][/P][/W]

If no parameter is present, all directory entries on the
diskette in the default drive are listed.

If only the drive specification is present (DIR d:), all
entries on the diskette in the specified drive are
listed.

If only a filename is present with no extension, all
files with that filename on the diskette in the default
drive are listed.

If a full file specification is present, all files with the
specified filename and extension on the diskette in
the specified drive are listed.

Wild Card Characters:

The wild card characters ? and * may be used in the
filespec parameter. The following invocations of the
DIR command are equivalent:

DIR DIR #*,*
DIR FILE DIR FILE.*
DIR .EXT DIR #* EXT
DIR . DIR *,

Pause (/P) Parameter:
This parameter causes the display to pause when the

screen is full. When you are ready to continue with
the directory listing, press any key.

3-28 DOS

Wide (/W) Parameter:

This parameter produces a wide display of the direc-

tory. This display lists only the filenames. Each line T
displayed contains five filenames. It is recommended
that this parameter be used on an 80-column display.
To List All Files:
Use this option to list all files in a directory.
Example:
DIR
or
DIR d:
Result: —
A>DIR
FORECAST A 100 11-17-83 9:54p
FCST A 1099 12-01-82 3:00a
LABOR 20123 2-28-83 12:13p
To List Selected Files:
Use of this option permits you to list selected files in a
directory.
Example:
DIR filename
or
N

DIR d:filename

CHAPTER 3 3-29

If either filename or its extension is omitted, an * is
assumed. The object of the first example is to list all
files in the directory of the default drive. The second
example illustrates how to list all files in the directo-
ry of a specified drive.

3-30 DOS

DISKCOMP (DISKETTE COMPARE)

Command

Type:

Purpose:

Syntax:

Comments:

External.

To compare the contents of one diskette to the con-
tents of another diskette.

DISKCOMP [d:] [d:] [/1]

Single or dual drives may be specified with this
command. If you specify the same drive, a single-
drive comparison is performed. The DISKCOMP utili-
ty prompts you as needed in the single-drive compar-
ison.

Omitting both drive parameters causes a single-drive

comparison to be performed on the diskette in the

default drive. Specifying only one drive causes only
the diskette in the specified drive to be compared.

If DISKCOMP is entered, and the COMPAQ Computer
has two disk drives, DOS will prompt:

Insert first diskette in drive A:
Insert second diskette in drive B:
Strike any key when ready

If the appropriate diskettes have already been insert-
ed in the appropriate disk drives, press any key to
begin the comparison. As much data as can be stored
in memory is taken from the first diskette and com-
pared to the second diskette. Then the system goes
back to the first diskette for more data. This process

™

Chapter 3 3-31

continues until all the data on the first diskette has
been compared to the data on the second diskette.
DOS prompts:

Diskettes compare ok
Compare more diskettes? (Y/N)

Press Y to compare another pair of diskettes, or N to
end the compare session.

If your COMPAQ Computer has one disk drive, DOS
will prompt:

Insert first diskette in drive A:
Strike any key when ready

Insert the diskette, press any key, and the comparison
begins. As much data as can be accommodated will
be taken into memory from the diskette, then DOS
prompts:

Insert second diskette in drive A:
Strike any key when ready

When you have exchanged diskettes and pressed a
key, the data in memory will be compared with the
data on the second diskette, and DOS will prompt for
a return of the first diskette. This process continues,
with alternation of the two diskettes in one drive,
until the comparison is complete. DOS will display
the same message as for a dual-drive system.

The /1 parameter forces DISKCOMP to compare only
the first side of the diskettes, even if the diskettes and
drives are double-sided.

DISKCOMP compares all 40 tracks on a track-for-
track basis and issues a message if the tracks are not

3-32

DOS

the same. The message indicates the track number
(0-39) and the side (0 or 1) where a mismatch was
found.

If both drive specifiers are omitted, a single-drive
comparison is performed on the default drive.

If the second drive specifier is omitted, the default
drive is used as the secondary drive. If the default
drive is specified in the first parameter, a single-drive
comparison is made.

DISKCOMP may not issue a ‘“Diskettes compare ok
message when a diskette created by the COPY com-
mand is compared to the diskette it was copied from.
COPY produces a copy that contains the same infor-
mation, but places the information at different loca-
tions on the target diskette from the locations on the
source diskette. Use the COMP command to compare
individual files on the diskettes.

If a diskette error occurs while DISKCOMP is reading
the diskette, a message indicates where (track and
side) the error occurred. Then DISKCOMP continues
to compare the rest of the diskette. DISKCOMP auto-
matically determines the number of sides to be com-
pared, based on the diskette that is to be read first. If
the first diskette or drive can be read on only one side,
or if the /1 parameter is used, only the first side is
compared on both diskettes. If the first drive and
diskette are double-sided, a two-sided comparison is
made. An error message is produced if the second
diskette is single-sided.

Chapter 3 3-33

DISKCOPY (COPY DISKETTE)

Command

Type:
Purpose:
Syntax:

Comments:

External.

To copy the contents of one diskette to another.
DISKCOPY [d:] [d:] [/1]

The use of the optional /1 parameter causes DISK-
COPY to to copy only the first side of the diskette,
regardless of the diskette or drive type.

You may specify the same or different drives. Should
the drives be the same, a single-drive copy operation
is performed. You are prompted to insert the correct
diskette at the appropriate time. DISKCOPY will wait
for you to press any key before continuing.

If DISKCOPY A: B: is entered, and the COMPAQ
Computer has two disk drives, DOS will prompt:

Insert first diskette in drive A:
Insert second diskette in drive B:
Strike any key when ready

If the appropriate diskettes have already been insert-
ed in the appropriate disk drives, press any key to
begin the copy procedure. As much data as can be
stored in memory is taken from the first diskette and
copied to the second diskette. Then the system goes
back to the first diskette for more data. This process
continues until all the data on the first diskette has
been copied to the data on the second diskette. DOS
prompts:

Copy complete ok
Copy another? (Y/N)

3-34 DOS

DISKCOPY automatically determines the number of
sides to copy, based on the source diskette. If only the
first side of the source diskette can be read, then only
the first side will be copied. Should the source
drive/diskette be dual-sided, both sides will be cop-
ied, unless you override it with the /1 parameter.
Should any incompatibilities exist, the system dis-
plays an error message.

Parameter Omission Considerations:

The omission of both parameters causes the utility to
perform a single-drive copy operation on the default
drive.

Omitting the second parameter causes the default
drive to be used as the destination drive.

Should you omit the second parameter and specify
the default drive as the source drive, a single-drive —
copy operation will be performed.

Once complete, the DISKCOPY prompts:
Copy another? (Y/N)
Diskette Fragmentation Problems:

Diskettes having a large amount of file creations and
deletions tend to become fragmented. This fragmen-
tation occurs because diskettes are not designed to
allocate space sequentially. The first free sector found
is the next sector allocated, regardless of its location
on the diskette.

Fragmentation will often cause degraded perform-
ance because of excessive head movement involved ~
in finding, reading, and/or writing a file.

Chapter 3 3-35

It is highly desirable that you resort to the COPY
command instead of DISKCOPY to eliminate frag-
mentation.

For example:
COPY A:*.* B:

This exercise copies all files from the diskette in
Drive A: to the diskette in Drive B..

3-36 DOS

ERASE Command

Type:

Purpose:

Syntax:

Comments:

Internal.

To delete a specified file from a designated drive or
delete the file from the default drive (if a drive is not
specified).

ERASE d:filename
or
DEL d:filename

The shortened form, DEL, is a valid substitution for
ERASE.

The use of wild card characters ? and * in file names
is permitted. Wild card characters must be used with
caution, because multiple files may be erased with a
single command.

To erase/delete all files on a diskette, enter:
ERASE [d:]*.*
When you specify the filename *.* to erase all files on

a diskette, DOS issues the following to verify the
deletion request:

Are you sure? (Y/N)

Chapter 3 3-37

EXE2BIN Command

Type:

Purpose:

Syntax:

Comments:

External.

To convert files from the .EXE format to the .COM
format.

EXE2BIN filespec [d:][filename][.ext]

The first parameter is the input file; if no extension is
given, it defaults to .EXE.

The second parameter is the output file. If no specific
drive is given, the drive of the input file is used. If no
filename is given, the filename of the input file is
used. If no extension is given, .BIN is used.

The input file must be in valid .EXE format produced
by the linker. The resident, or actual code and data
contained in the file, must be less than 64 Kbytes.
There must be no stack segment.

Two kinds of conversions are possible, depending on
whether CS:IP: is specified.

If CS:IP is not specified, a pure binary conversion is
assumed. If segment fix-ups are necessary, the follow-
ing prompt appears:

Fix-up needed - base segment (hex):

If you type a legal hexadecimal number and then
press ENTER, execution continues.

If CS:IP is specified as 100H, it is assumed the file is
to be run as a .COM file ORGed at 100H, and the first
100H of the file is to be deleted. No segment fix-ups

3-38

DOS

are allowed, because .COM files must be segment
relocatable.

If CS:IP does not meet one of these criteria, or meets
the .COM file criterion but has segment fix-ups, the
following error message is displayed:

File cannot be converted

To produce standard .COM files you must both ORG
the file at 100H and specify the first location as the
start address. This is done using the END statement.
For example:

ORG 100H
START:

END START

Chapter 3 3-39

FORMAT Command

Type:

Purpose:

Syntax:

Comments:

Internal.

To initialize the designated or default diskette in a
recording format acceptable to DOS. Additionally,
FORMAT analyzes the entire diskette for any defec-
tive tracks and prepares the diskette to accept DOS
files by initializing the directory, file allocation table,
and system loader.

FORMAT [d:][/S][/1]

All diskettes must be formatted by using either the
FORMAT or DISKCOPY command before the diskette
may be used by DOS.

Formatting System Files (/S):When you use the /S
parameter, the operating system files are also copied
from the default drive diskette to the new diskette in
the following order:

IOSYS.COM
MSDOS.COM
COMMAND.COM

Single-Sided Formatting (/1):

When you specify /1 as a parameter, the destination
diskette is formatted for single-sided use.

NOTES:
« IOSYS.COM and MSDOS.COM are hidden from
operator access. As such, they do not appear in any

directory searches, including the DIR command.

« Formatting destroys all existing data on a diskette.

3-40 DOS

« Defective tracks are marked as reserved during the
format process to prevent the tracks from being
allocated to a data file.

« FORMAT produces a status report, indicating the
following:

Total diskette space.

Space marked as defective.

Space currently allocated to files (for use with /S).
Available space.

« FORMAT determines the destination drive type
and formats the diskette accordingly. If the disk-
ette may be successfully read and written on on
side only, the diskette is formatted for single-sided
use. The diskette may be used in either type of —
drive. If the target drive is dual-sided and you do
not use the /1 parameter, the diskette is formatted
for dual-sided use; it will not be usable in a
single-sided drive.

Example: By issuing the following command, the Drive B:
diskette will be formatted and the operating system
file will also be copied:

A> FORMAT B:/S

The system issues the following message:

Insert new diskette for drive B:
and strike any key when ready

After you insert the appropriate diskette and press
any key, the system issues the message:

Formatting . . .

Chapter 3 3-41

Once formatting is complete, the system issues the
following message:

Formatting . . . Format complete
System transferred

322560 bytes total disk space
13312 bytes used by system
309248 bytes available on disk

Format another? (Y/N)

3-42 DOS

MODE Command

Type: External.

Purpose: To set the operations mode on 1) a printer; 2) an
external monitor display; 3) the asynchronous com-
munications adapter; or 4) to redirect all parallel
printer output to the asynchronous communications
adapter.

NOTE: When the MODE command is used for 1, 3, or
4, the printer and asynchronous communications
adapter intercept code is placed in low memory in
the DOS communications area.

Syntax: MODE [LPT#:][n][,m][,T]
or
MODE COMn:baud|[,parity][,databits][,stopbits][,P]
or

MODE LPT#:=COMn:

Comments: If there is an invalid or missing n or m parameter, the
operations mode for that parameter will not change.

The MODE command has four possible formats:
Format 1, Printer:

MODE LPT#:[n][,m]

= printer number (1, 2, or 3).

n = characters per line (80 or 132).
m = vertical spacing, lines per inch (6 or 8).

Chapter 3 3-43

Example: MODE LPT1: 132,8

The defaults for a printer are 80 characters per line,
and 6 lines per vertical inch. This command changes
the operations mode for printer 1 to 132 characters
per line, and 8 lines per vertical inch.

Format 2; External Monitor Display:
MODE [n][,m][,T]

n = characters per line (40 or 80).
m = shift display, right or left (R or L).
T = request for a test pattern (used to align display).

With this command, you can shift the display one (for
a 40-character line) or two (for an 80-character line)
characters right or left to make viewing easier. When
you include a T in this MODE command, a prompt
asks you if the display is now aligned correctly. If you
answer with Y, the command ends. If you answer
with N, the display shifts again, and the prompt is
repeated.

Example:
MODE 40,L,T

This command changes the operations mode to 40
characters per line, and shifts the display one charac-
ter to the left. Then the test pattern is displayed, and
the prompt appears. You can now shift the display
again, without reentering the command, by answer-
ing the prompt with N.

Format 3, Asynchronous Communications Adapter:

MODE COMn:baud]|,parity][,databits]|,
stopbits][,P]

3-44

DOS

n = asynchronous communications adapter
number (1 or 2).
baud = baud rate (110, 150, 300, 600, 1200,

4800, or 9600). You may enter only the

first two numbers of the baud rate.
parity = mnone (N), odd (O), or even (E). The
default is even (E).

databits = 7 or 8.
The default is 7.
stopbits = 1 or 2 If baud = 110, the default is 2;

otherwise, the default is 1.

These are called the protocol parameters, and are
used to initialize the asynchronous communications
adapter. You must always specify baud in the proto-
col. You can use the defaults for the other parameters
by entering commas.

Examples:
MODE COM2:30, 0O,8,2

This sets the operations mode on asynchronous com-
munications adapter 2 to 300 baud rate, odd parity, 8

databits, and 2 stopbits. An example with defaults
looks like this:

MODE COM2:30,,,,P

In this command, the parity defaults to even, the
databits defaults to 7, and the stopbits defaults to one.

You can specify P only in protocol for a serial
interface printer. The P parameter causes timeout
errors to be retried continuously. To stop this loop,

S

Chapter 3 3-45

press “"BREAK. You can stop the timeout errors from
being retried continuously by reinitializing the asyn-
chronous communications adapter without the P pa-
rameter in the command.

Format 4, Printer Output to Asynchronous Commu-
nications Adapter:

MODE LPT#:=COMn:

= printer number (1,2, or 3).
n = asynchronous communications adapter number
(1 or 2).

Examples: LPT1:=COM2:

This command redirects all output for printer 1 to
asynchronous communications adapter 2.

NOTE:

* You must initialize the asynchronous communica-
tions adapter (see Format 3) before using MODE to
redirect parallel printer output to a serial device.
You must include the P parameter in the initializa-
tion command if the serial device is a printer.

* To stop redirection of output for the printer desig-
nated with #, use:

MODE LPT#:[n][,m]

3-46 DOS

PAUSE Command

Type:
Purpose:
Syntax:

Comments:

Internal.

To suspend execution of a batch file.
PAUSE [comment]

To allow time for changing diskettes or performing
other actions during the execution of batch com-
mand files, enter the PAUSE command. PAUSE sus-
pends execution until any key, except ABREAK, is
pressed.

The optional comment may be entered on the same
line as PAUSE to provide the operator of the batch
files with some meaningful message during the
pause. For example, a message may be given to
change the diskette in a designated drive. The com- -
ment is displayed before the ‘“Strike any key”’ mes-
sage.

When PAUSE is encountered, the system suspends
activity and displays:

Strike a key when ready

When you press any key, except ~"BREAK, execution
of the batch file resumes. If "BREAK is pressed, the
system displays the prompt:

Abort batch job? (Y/N)

If Y is pressed in response to this prompt, execution
of the remainder of the batch file is aborted, and
control returns to the DOS command level. |

Chapter 3 3-47

If N is pressed, execution of the batch file continues.
PAUSE can be used to break a batch file into pieces,
ending the file at an intermediate point.

3-48 DOS

REM (REMARK) Command

Type: Internal.

Purpose: To display a remark during the execution of a batch
file.

Syntax: REM [comment]

Comments: The remark (or comment) is entered on the same line
as REM, separated by a blank space, tab, or comma.

When the system encounters REM in a batch file, it
will not attempt to execute the remark.

The REM command has no other purpose.

Chapter 3 3-49

REN (RENAME) Command

Type: Internal.
Purpose: To rename a file.
Syntax: REN filespec filespec

Comments: The first filespec must be given a drive designation
unless it resides in the default drive. Any drive
designation for the second filespec is ignored. The
renamed file continues to reside on the same
diskette.

Use of a wild card character causes a one-to-one cor-
respondence between files specified in the first
filespec and those specified in the second filespec.

Examples: REN *.LST *.PRN

Renames all files with an .LLST extension to the same
names with a .PRN extension.

REN B:ABODE ?D?B?

Renames the file ABODE on the diskette in Drive B:
to ADOBE. The file remains on the diskette in Drive
B:.

3-50 DOS

SYS (SYSTEM) Command

Purpose:

Syntax:

Comments:

To transfer DOS system files from a diskette contain-
ing the files to the diskette in the designated drive.

SYS d:

SYS is normally used to place the operating system
files, IOSYS.COM and MSDOS.SYS, on a newly-
formatted diskette. A drive specifier (d:) is required
for the target diskette. IOSYS.COM and MSDQOS.SYS
are hidden files. These files do not appear in the
listing when using the DIR command.

COMMAND.COM is not transferred.

FORMAT /S formats a new diskette and installs the
system files.

Chapter 3 3-51

TIME Command

Type:
Purpose:

Syntax:

Comments:

Internal.
To display and set the time.
TIME [hh][:mm][:ss][.cc]

If the TIME command is entered without parameters,
the following message is displayed:

Current time is hh:mm:ss.cc
Enter new time:

A new time may be typed, or ENTER may be pressed
to bypass the query.

The new time must be entered using numerals only;
letters are not allowed. The allowable parameters are:

hh = 00-24 (hours).

mm = 00-59 (minutes).

ss = 00-59 (seconds).

cc = 00-99 (hundredths of seconds).

The hour, minute, second, and hundredths of sec-
onds entries must be separated by colons.

DOS uses whatever time is entered as the new time as
long as the parameters and separators are legal. If the
parameters or separators are not legal, DOS returns
the message:

Invalid time
Enter new time:

DOS then waits for a legal entry for time.

3-52 DOS

TYPE Command

Type:
Purpose:
Syntax:

Comments:

Internal.
To display the contents of a file.
TYPE filespec

When you use TYPE to display the contents of a file,
the symbols displayed are the input as the computer
sees it. Files containing text are readable, but some
files, such as program files, contain many unrecogniz-
able characters.

NOTE:
« This command allows you to examine the file, but
not modify it. Use EDLIN to change the contents.

« With the TYPE command, the contents of the file"
scroll up the screen very quickly. To temporarily
suspend the display, press “"NUM LOCK. Press
any character key to continue the display.

« To print the contents of the file, press ~PRTSC
before you enter the TYPE command. The contents
of the file will print as they are displayed. To stop
the printing, press ~PRTSC again.

Chapter 3 3-53

3-4. SUMMARY OF DOS
COMMANDS

(batch) Execution of batch files (internal command).
[d:]filename[parameters]

CHKDSK Scans the directory of the default or designated
drive and checks for consistency, (external command).

CHKDSK [d:]
COMP Compares files (external command).
COMP [filename] [d:][filename]
COPY Copies specified file(s) (internal command).

COPY [/A][/B]filename[/A][/B] [d:][filename][/A][/B]
[/V]

or

COPY [/A][/Blfilename[/A][/B][+filename][/A][/B][d:]
[filename][/A][/B][/V]

DATE Displays and sets date (internal command).
DATE [mm-dd-yy]

DEL Deletes specified file(s). DEL is the same as ERASE
(internal command).

DEL [d:][filename]
DIR Lists requested directory entries (internal command).

DIR [d:][filename][/P][/W]

3-54 DOS

DISKCOMP

DISKCOPY

ERASE

EXE2BIN

FORMAT

MODE

Compares diskettes (external command).
DISKCOMP [d:] [d:] [/1]

Copies the contents of one diskette to another disk-
ette(external command).

DISKCOPY [d:] [d:] [/1]

Deletes specified file(s). ERASE is the same as DEL
(internal command).

ERASE [d:][filename]
Converts .EXE files to .COM format.

EXE2BIN filename [d:][filename]

Formats a diskette to receive DOS files (external com-
mand).

FORMAT [d:][filename][/S][/1]

Sets mode of operation on a printer or display (external
command).

MODE [LPT#:][n][,m][,T]

or

MODE [n],[m],[T]

or

MODE COMn:baud|,parity][,databits][,stopbits][,P]
or

MODE LPT#:=COMn

PAUSE

REM

REN

SYS

TIME

TYPE

Chapter 3 3-55

Pauses for input in a batch file (internal command].
PAUSE [comment]

Displays a comment in a batch file (internal command).
REM [comment]

Renames first file as second file (internal command).
REN[AME] filename [d:]filename

Transfers DOS system files from one diskette toanother
(external command).

SYS d:
Displays and sets the time (internal command).

TIME [hh:mm:ss.cc]

Displays the contents of a specified file (internal com-
mand).

TYPE filename

Chapter 4 4-1

4-1. INTRODUCTION TO EDLIN

EDLIN is a text editor used to edit files one line at a time. Each line
may be up to 253 characters long. The last character of each, the end
of line character, is signaled when the ENTER key is pressed.

EDLIN is invoked by entering:
EDLIN d:filespec.ext

If d:filespec.ext is not given, this message appears:
Filename must be specified

and the DOS prompt is returned. If the file is to be created, it must be
given a name in advance.

If the specified file does not exist, EDLIN creates the file and returns
the message “New file”. The asterisk (*) prompt, and the cursor,
indicate that input may begin.

If the specified file exists, EDLIN loads the file into memory. If the
whole file is loaded, EDLIN returns the message ‘“End of input file”
and an asterisk (*) prompt. If the file is larger than memory, EDLIN
fills three-fourths of available memory with the first part of the file,
then returns the asterisk (*) prompt, but not the “End of input file”
message. The lines in the file may be called up individually by
typing the line number, or listed using the LIST (L) command.

Line numbers are not present in saved text, but when a file is created
or called up for edit, lines are numbered dynamically. Line numbers

begin at 1 and are incremented by 1 through the end of the file.

When new lines are inserted between existing lines, all line numbers

_following the inserted text are automatically incremented by the

number of lines inserted. When lines are deleted between existing
lines, all line numbers following the deleted text are decremented

4-2 DOS

automatically by the number of lines deleted. Consequently, line
numbers always run from 1 through n (the number of the last line in

the file).

If the file is longer than memory, and you want to edit the part that is
not in memory, you must first write out to the diskette some of the
file that is in memory, and then append more lines into memory,
using the APPEND command.

To end the edit session, use the END (E) command to save the edit, or
the QUIT (QQ) command to quit the session without saving the edit. Q
is especially useful if serious errors have been made during the
editing session.

Chapter 4 4-3

4-2. EDLIN COMMANDS

EDLIN supports both intraline and interline commands. Intraline
commands perform editing functions within a line. Interline com-
mands perform editing functions between lines.

Intraline Commands

Lines are edited in EDLIN through the use of special editing keys,
and function keys which allow you to perform many small, but
frequently used, commands with the touch of a key or two. Only
those keys which have specific applications in EDLIN are presented
here.

ENTER acts as the return key on a typewriter. It accepts a line and
moves the cursor down to the first position of the next line.

- The SPACEBAR advances the cursor one space (left to right) each
time it is pressed. If a character is spaced over, it is deleted.

BACKSPACE moves the cursor one space (right to left) each time it is
pressed. If a character is backspaced over, it is deleted.

The SHIFT keys on both sides of the keyboard change upper-case
letters to lower-case letters, or vice-versa. SHIFT is always required
to print the symbols above keyboard numbers.

CAPS LOCK changes the case of all characters, except numbers and
symbols. Press once to activate; again to deactivate. If characters are
lower-case, CAPS LOCK makes them upper-case. If they are upper-
case, CAPS LOCK makes them lower-case. Whether or not CAPS
LOCK is engaged, use SHIFT to print the opposite case, or a symbol
above a number.

TAB moves the cursor to the next tab stop. Tab stops are set at every
eight characters.

4-4 DOS

NUM LOCK is a toggle key. When it is activated, the numbers in the
number pad to the right of the keyboard may be printed. When it is

not activated (default) or is deactivated, only the CURSOR-LEFT and
CURSOR-RIGHT keys are operational. The CURSOR-LEFT key
moves the cursor, deleting characters, from right to left. The -
CURSOR-RIGHT key prints the characters from the template to the
buffer input line, one at a time, as does the special editing key F1 (see
below). The CURSOR-UP, CURSOR-DOWN, HOME, END, PGUP,
and PGDN keys have no function in EDLIN.

Multiple and Control (CTRL) Keys

In this book, and in many program descriptions, there is a special
symbol used to indicate control characters. For example, if the letter
T is to be used as a control character, it is written as ~T. The caret (")
superscript always means that you must first press and hold down
the CTRL key, and then press the designated character key. The NT
character is read aloud as “Control T”.

If two keys are given (for example, "BREAK), press and hold the first
key, press the second key, and release them both. When three keys
‘(for example, NALT+DEL) are given, press and hold the first two
(CTRL and ALT), press the third (DEL), and release all three.

NALT+DEL resets the system to the DOS command level.
"BREAK aborts the current command.

BACKSPACE moves the cursor and deletes one character (right to
left) each time it is pressed.

APRTSC activates the printer. Lines are printed as they are entered,
or as they are displayed on the screen with the TYPE command.
Press the keys again to deactivate the printer.

SHIFT+PRTSC causes the printer to print a hard copy of everything ™~
displayed on the screen, but it is not engaged on a continuing
basis. |

Chapter 4 4-5

ANUM LOCK suspends display of output to the terminal screen
temporarily. This is especially useful if a large amount of material is
- being output to the screen, as when a very long directory is being
displayed with the DIR command, or a long file is being displayed
with the TYPE command. To continue, press any character key.

Key:

F1

F2

F3

DEL

F4

ESC

INS

F5

Function:

Copies one character from the template to the input buffer
line. F1 is the same as the CURSOR-RIGHT key in the number
pad.

Copies all characters, up to the character specified, from the
template to the input buffer line.

Copies all remaining characters from the template to the input
buffer line

Does not copy (skips over) a character in the template line and
does not print it to the input buffer line. To see results of DEL,
press F3.

Does not copy (skips over) characters in the template up to the
character specified. To see the results of F4, press F3.

Voids the current input buffer line, leaving the template
unchanged.

Turns on the insert mode. Allows characters to be inserted
into a line. Press ENTER to cancel.

Makes the last input buffer line the new template for further
editing.

NOTE: Keys F6 through F10 have no functions assigned for EDLIN.

4-6 DOS

F1 Key

Purpose:

Comments:

Example:

To copy one character from the template to the input
buffer line.

At the beginning of the intraline edit, the cursor
(indicated by the underline) is positioned at the
beginning of the input buffer line.

Pressing the F1 key copies one character from the
template (the top line) to the input buffer line (bottom
line). Insert is automatically turned off if it was on. If
ENTER is pressed before the complete line has been
copied, the template will be truncated from the last
character before the entry.

NOTE: The CURSOR-RIGHT key in the number pad
has the same function.

1:*This is a sample file.
|

F1 copies the first character (T) from the template to
the second, or input buffer line:

1:#This is a sample file
F1 1:#T_

Each time F1 is pressed, one more character ap-
pears:

F1 1:*Th_
F1 1:*Thi_
F1 1:#This_

——

Chapter 4 4-7

F2 Key

Purpose:

Comments:

Example:

To copy all characters, up to a specified character,
from the template to the input buffer line.

Pressing F2 copies all characters, up to, but not
including, a specified character. The specified char-
acter is the next character typed. It is not copied or
shown on the screen. Pressing F2 causes the cursor to
move to the specified character where it next appears
in the line.

Use of the SPACEBAR as the single character causes
all characters up to a space to be copied. If the
template does not contain the specified character,
nothing is copied. F2 automatically turns insert off, if
it is on.

NOTE: F2 will not print the last character of a line
from the template to the input buffer line. Use F1 or
F3 to complete the line. If ENTER is pressed before
the buffer line is complete, the template will be
truncated from the point of entry.

To copy all characters up to the character P:

1:#This is a sample file
F2p 1:#This is a sam_

4-8 DOS

F3 Key

Purpose:

Comments:

Example:

To copy the remainder of the line from the template to
the input buffer line.

Pressing F3 copies all characters from the template,
or copies all those remaining from the last character
edited. When F3 is pressed, the rest of the line
appears on the buffer line, and the cursor is posi-
tioned after the last character on the line. Insert is
automatically turned off if it is on.

Only F1 or F3 will print the last character of the
template to the input buffer line. If ENTER is pressed
before the last character of the template is copied, the
template will be truncated from the point of entry.

1:#This is a sample file
F3 1:#This is a sample file _

e

Chapter 4 4-9

DEL (DELETE) Key

Purpose:

Comments:

Example:

To skip over (not copy) one character from the tem-
plate to the buffer line.

Each time DEL is pressed, one character is skipped
over (not copied) from the template. The action of
DEL is the opposite of F1. When the edited buffer line
is entered, those characters not copied from the
template are effectively deleted.

1:#This is a sample file
DEL 1:*_

The cursor does not move. To see how much of the
line has been skipped over, press F3 to copy the rest
of the template to the buffer line.

1:*This is a sample file
DEL 1:*_
F3 1:*his is a sample file _

4-10 DOS

F4 Key

Purpose:

Comments:

Example:

To skip over (not copy) multiple characters, up to but
not including a specified character, from the template
to the buffer line.

Pressing F4 skips over all characters in the template
up to a specified character. The specified character is
the next character typed. It is not copied and not
shown on the screen.

To see the results of F4, press F3 to copy the rest of
the template to the buffer line.

If the template does not contain the specified charac-
ter, nothing is skipped over. The action of F4 is
opposite to F2,

To skip over all characters up to the character P:

1:+This is a sample file
F4ap F3 1:xple file _

Chapter 4 4-11

ESC (ESCAPE) Key

Purpose:

Comments:

Example:

To quit input and cancel the input buffer line.

Pressing ESC cancels the input buffer line but leaves
the template unchanged. ESC also prints a backslash
(\), moves the cursor to the first position of the next
line, and turns insert mode off if it was on.

Pressing F3 copies the template to the input buffer
line just as it was before ESC was pressed.

1:*This is a sample file
F4p F3 1:*plefile
ESC 1:*ple file\

Press F3 to copy the original template to the input
buffer line again.

F3 Thisis a sample file__

4-12 DOS

INS (INSERT) Key

Purpose: To insert characters into a line.

Comments: Pressing INS causes the system to enter the insert
mode. Characters are inserted behind the character
the cursor points to. Characters ahead of the cursor
are moved to the right to make room for the insert.
After the desired characters are inserted, INS is
pressed again to end the insert mode.

NOTE: If the ENTER key is pressed before INS is
disabled, the rest of the line will be truncated.

Example: 1:+This is a sample file
F2p 1:#This is a sam_

Press INS to insert the three characters s, o, and n.

F2p 1:+This is a sam_
INS (s on) 1:*This is a samson_

Press INS again to exit insert mode and press F3 to
copy the rest of the template:

INS F3 1:+*This is a samsonple file_

If the ENTER key had been pressed, rather than F3,
the remainder of the template would have been
truncated, and the input buffer line ended at the end
of the insert:

1:#This is a samson

Chapter 4 4-13

F5 Key

Purpose:

Comments:

Example:

To make the edited input buffer line the new template
for additional editing.

Pressing F5 makes the edited input buffer line the
new template to allow further editing. Pressing F5,
rather than ENTER, at the end of the edited line,
outputs an at sign (@) at the end of the line, and
positions the cursor, without the EDLIN prompt (*),
under the first character of the next line. The line
number is not shown.

1:*This is a sample file

F2p 1:*This is a sam__

INS(son) 1:*Thisis asamson_

F3 1:*This is a samsonple file
F5 1:*This is a samsonple file@

Additional editing can now be done using the new
template. To delete s o n and return the input buffer
line to its original form:

NOTE: # = space in this example.

1:*This is a sampsonple file

F2 # This
F2 # This is
F2 # This is a

F1 This is a (#)

4-14 DOS

F1 1:*Thisis a s

F1 1:*This is a sa

F1 1:#This is a sam

DEL (3 times) 1:*This is a sam

F3 1:*This is a sample file

Interline Commands

Interline commands perform editing functions on whole lines at a
time. The interline commands are summarized in the following list,
and are described in detail following the description of command
parameters.

Parameters:

Interline commands, except END (E) and QUIT (Q), accept some
parameters. The effect of a parameter depends on the command.

Parameter: Description:

line line indicates a line number in a file. It is entered by
the operator. Line numbers must be separated from
other line numbers by a comma, and from other
parameters and the command by a space. line may be
specified in one of four ways:

Number Any integer less than 65534. If a number
larger than the largest existing line number
is specified, line indicates the line after the
last line number.

(Period) If a period is specified for line,
then line indicates the current line num-
ber. The current line is the most recently
edited line, and not necessarily the last
line displayed. It is marked by an asterisk
(*) between the line number and the first
character.

Ge——

Parameter:

line,line

Chapter 4 4-15

Description:

(Pound sign) The # indicates the line after
the last line number. Specifying # for line
has the same effect as specifying a number
larger than the last line number.

ENTER Pressing the ENTER key, without any of the
line specifiers above, directs EDLIN to use
a default value appropriate to the com-
mand.

A range of lines includes the first and last specified
lines and all lines in between. Line numbers are
separated by a comma; for example, 1,20 means lines
1 through line 20.

A single line number indicates the specified line
only.

A line number followed by a comma (for example, 5,)
specifies all lines from the given line through the end
of the file.

A line number followed by a comma and a period (for
example, 5,.) specifies all lines from the given line
through the current line.

If only the second line number is given, it must be
preceded by a comma. This specifies all lines from
the beginning of the file through line 20. For example:
,20 specifies lines 1 through 20.

If the period is used to specify the current line, and
the comma is used (.,20), all lines from the current
line through line 20 are specified.

Number of lines.

Continued

4-16 DOS

Continued
Parameter:

)

string

Description:

(Question mark) The question mark directs EDLIN to
ask the operator if the correct string has been found.

The question mark is used only with the REPLACE
and SEARCH commands. Before continuing, EDLIN
waits for either Y or ENTER as a yes response. Any
other key signals a no response.

Specifies a string or group of characters to be found,

to be replaced, or to replace other text. string is used
only with the SEARCH and REPLACE commands.

Each string must be terminated by a ~Z or an ENTER.
No spaces should be left between strings, or between

a string and its command letter, unless spaces are part
of the string (see SEARCH and REPLACE Commands).

P

Chapter 4 4-17

APPEND (A) Command

Purpose:
Syntax:

Comments:

To append lines from input file to editing buffer.
[n]A

The APPEND command is used for extremely large
files that will not fit into memory all at one time. By
writing part of the editing buffer to the output file
(using the WRITE (W) command), room is made for

appending lines to the file using the APPEND (A)
command.

If A is typed without a parameter, lines are appended
to that part of the file currently in memory until
available memory is three-quarters full, or until there
are no more lines to append.

If the parameter n is given,then n lines are appended
to that part of the file currently in memory.

4-18 DOS

DELETE (D) Command

Purpose:
Syntax:

Comments:

Example:

To delete the specified line or line range.
[line][,line]D

If only one line number is given, the specified line is
deleted.

If the line number is preceded by a comma, the
second line number is assumed, and all lines up to,
and including the specified line are deleted.

If both lines are specified, separated by a comma,
both lines and all lines between are deleted.

A period indicates the current line and, when used
with the comma, indicates the starting or ending line
of the deletion.

NOTE: Use the DELETE (D) command with extreme
caution. Lines and line ranges are permanently delet-
ed. Should this happen, use the QUIT (Q) command
to abort the edit and begin again.

When lines have been deleted, all line numbers
following the deleted line or lines are dynamically
renumbered. The line immediately after the deleted
line or line range becomes the current line, and has
the same line number as the first deleted line.

1: This is a sample file

2: used to demonstrate dynamic line numbers.
3: See what happens when you

4: delete and insert

25: (The D and I commands)

Chapter 4 4-19

26: (Use \Z to exit insert mode)
27:*line numbers

To delete lines 5 through 24:
5,24 D
The result is:

1: This is a sample file

2: used to demonstrate dynamic line numbers.
3: See what happens when you

4: delete and insert

5:*(The D and I commands)

6: (Use Z to exit insert mode)

7: line numbers

To delete line 6, enter:
6D
The result is:

1: This is a sample file

2: used to demonstrate dynamic line numbers.
3: See what happens when you

4: delete and insert

5: (The D and I commands)

6:*line numbers

To delete a range of lines, beginning with a current
line (3) and ending with line 5 enter:

w9 1D
The result is:
1: This is a sample file

2: used to demonstrate dynamic line numbers.
3:*line numbers

4-20 DOS

EDIT Command

Purpose: To call up lines for editing.
Syntax: [line number]

Comments: When a line number is entered, EDLIN displays the
line number and the text on that line. This is the
template. The line number is reprinted on the line
below, but the line is empty. This is the new input
buffer line, and it is ready for editing.

Both lines show an asterisk (*) after the line number.
The asterisk indicates that the line is the current line.
In a listing, the current line is the last line entered.

Any of the available intraline commands can be used

to edit the line. The existing text serves as the
template. When the line has been edited, or if no—
changes are needed, press the ENTER key to accept
the line.

When ENTER is pressed, EDLIN alternates between
presenting the prompt and cursor (*_) at the left
margin of the screen, and the next line of the file.

Each time *_ appears, EDLIN will accept a new
command (LIST, END, and so on).

If the ENTER key is pressed while the cursor is in the
middle of a line, the remainder of the line will be
truncated.

NOTE: If the input buffer line needs additional edit-
ing, use special editing key F5 to make the input
buffer line a new template. This may be repeated as
often as necessary. When the ENTER key is pressed,”
the final input buffer line is sent into memory.

Example:

Chapter 4 4-21

1: This is a sample file
2: used to demonstrate
3: the editing of line
4:* four.

To edit line 4, enter:

4

The contents of the line are displayed with an
asterisk on the template line. The input buffer line
also has an asterisk. The cursor marks the first
character space on the input buffer line.

4:*four.
4:*%

4-22 DOS

END (E) Command

Purpose:

Syntax:

Comments:

~ an empty line or a line below the last line of the —

To exit the editing session, save the edited file, and
return to DOS command level.

E

To save the edited file on diskette, type E in response
to the EDLIN prompt (*_). The system will store the
file and exit to the DOS command level.

When a file has been created using the INSERT (I)
command, type Z on an empty line following the
last line of the insert. Then type E at the EDLIN
prompt.

NOTE: In insert mode, ~Z will cause the line it is
typed on to be deleted. It should always be typed on

file.

The E command takes no parameters.

You must be sure that the diskette contains enough
free space for the entire file to be written. If the
diskette does not contain enough free space, the write
is aborted and some or all of the edited file is lost.

After execution of the E command, control is returned
to the DOS command level.

Chapter 4 4-23

To exit the editing session without saving the edit,
use the QUIT (Q) command. This may be important if
you have made a serious editing error such as enter-
ing D (DELETE) rather than L (LIST) after a line range.
If the END command is used, the lines will be
permanently deleted. The QUIT command will void
all editing, including the errors, and you may edit
again.

4-24 DOS

INSERT (I) Command

P =

Purpose: To create a new file, or insert line(s) of text immedi-
ately before a specified line.

Syntax: [line]l
Comments: To create a file in EDLIN, enter:
A>EDLIN filename
EDLIN will respond:

New file.
*

Enter the INSERT command (*) and EDLIN will
prepare a line for input:

I
1%

Every time ENTER is pressed, another line will be
added:

y
2% _
2 Ll
4:%_

To insert lines into an existing file above the line
specified (for example, 4), enter 4 I. Lines will be
inserted above line 4. When the insert is concluded,
line 4 and all subsequent lines will be automatically
renumbered. The original line 4 will be the current
line, regardless of its new line number.

Example:

Chapter 4 4-25

To append lines to the end of a file, enter the number
after the last line number (n I) or # 1. # signifies the
line number after the last line number in the file.

Enter NZ to terminate input.

NOTE: "\Z cancels and deletes the line where it is

typed. Enter ~Z on an empty line after the last line in
the file.

When the insert is finished and insert mode has been
exited, the line which now immediately follows the
inserted lines in an existing file, becomes the current
line. All line numbers following the inserted section
are incremented by the number of lines inserted.

If line is not specified for an existing line, the default
is the current line number; lines are inserted immedi-
ately before the current line.

If line is an integer larger than the last line number, or
if # is specified as line, the inserted lines are append-
ed to the end of the file. In this case, the last line
inserted becomes the current line.

1: This is a sample file

2: used to demonstrate dynamic line numbers.
3: See what happens when you

4: delete and insert

5: (The D and I commands)

6: (Use /\Z to exit insert mode)

7:*line numbers

4-26 DOS

To insert text before a specific line (not the current
line), enter a line number (for example, 4) and I:

41 T
The result is:

4:%__
Enter the new text for lines 4 and 5:

4:+fool around with
5:*those very useful commands that

To end the insert, type:
6:%/\7Z,
The LIST command (L) will display the file:

1: This is a sample file

2: used to demonstrate dynamic line numbers.
3: See what happens when you

4: fool around with

5: those very useful commands that

6:+*delete and insert

7: (The D and I commands)

8: (Use \Z to exit insert mode)

9: line numbers

To insert lines immediately before the current line,
enter:

I
The result is:

6:*_

Chapter 4 4-27

Insert the following text and terminate witha NZ:

6:*perform the two major editing functions,
Vi ¥

The result is:

1: This is a sample file
2: used to demonstrate dynamic line numbers.
3: See what happens when you
4: fool around with
5: those very useful commands that
6: perform the two major editing functions,
7 +*delete and insert
8: (The D and I commands)
9: (Use N\Z to exit insert mode)
10: line numbers

To append new lines to the end of the file, enter:
111

This produces:
11

Enter the following new lines:
11:*The insert command can place new lines
12:*anywhere in the file; no space problems.
13:*Because the line numbers are dynamic,
14:*they’ll slide all the way to 65533.

End insertion by typing ~Z. The new

lines will appear at the end of all previous
lines in the file. The result is:

4-28

DOS

The

O© 0O N O O b WIN =

p—
)

11
12
13
14

result is:

: This is a sample file

: used to demonstrate dynamic line numbers.
: See what happens when you

: fool around with

: those very useful commands that

: perform the two major editing functions,
: delete and insert

: (The D and I commands)

: (Use NZ to exit insert mode)

: line numbers

: The insert command can place new lines

: anywhere in the file; no space problems.

: Because the line numbers are dynamic,

: they’ll slide all the way to 65533.

- £

Chapter 4 4-29

LIST (L) Command

Purpose:

Syntax:

Comments:

Example:

To display a file or a specified range of lines on the
terminal screen.

[line][,line]L

If LL is entered without parameters, 23 lines are listed
with the current line in the middle; that is, 11 lines
before the current line, the current line, and 11 lines
after the current line. The current line remains un-
changed.

If both line numbers are given, separated by a comma,
both lines and all lines between them are listed.

If only one line number is given, only that line is
displayed.

If the line number is preceded by a comma, the 23
lines preceding and including specified line are dis-
played.

If the line number is followed by a comma, the
specified line and the 23 lines following are dis-
played.

If a period is used to indicate the current line, the
current line will be used as the starting or ending line
of the display.

1: This is a sample file

2: used to demonstrate dynamic line numbers.
3: See what happens when you

4: delete and insert

5: (The D and I commands)

4-30 DOS

15:*The current line contains an asterisk.

26: (Use Z to exit insert mode)
27: line numbers

To list lines 2 through 5, enter:
2,5 L
The result is:
2: used to demonstrate dynamic line numbers.
3: See what happens when you
4: delete and insert

5: (The D and I commands)

To list a range of lines beginning with the current line
(15), enter, line L:

,26 L
The result is:

15:*The line contains an asterisk.

26: (Use /\Z to exit insert mode)

To list a range of 23 lines beginning with a
specifiedline (13), enter:

13, L

The result is:

Chapter 4 4-31

13: The specified line is listed first in the range.
14: The line is unchanged by the L. command.
15:*The line contains an asterisk.

35: N7, exits interline insert command mode.

To list a range of 23 lines centered around the current
line, enter only L:

L
The result is:

4: delete and insert
5: (The D and I commands)

13: The line is listed in the middle of the range.

14: The line remains unchanged by the L com-
mand.

15:*The line contains an asterisk.

26: (Use NZ to exit insert mode.)

4-32 DOS

QUIT (Q) Command

Purpose:

Syntax:

Comments:

To quit the editing session without saving editing
changes, and exit to DOS command level.

Q

The Q command takes no parameters. It is simply a
fast means of exiting an editing session without
saving the edit. QUIT is especially useful if severe
errors were made in the edit, such as typing D

(DELETE), rather than L (LIST) after a line range. Q
will abort the edit, mistakes and all.

When the editing session is finished, and the EDLIN
prompt (*_) appears, type Q.

As soon as the QUIT command is given, EDLIN
displays the message:

Abort edit 7 (Y/N)_

Press Y to quit the editing session; press N (or any
character key) to continue the editing session.

To exit the editing session and save the edit, use the
END (E) command.

Chapter 4 4-33

REPLACE (R) Command

Purpose:

Syntax:

Comment:

To replace all occurrences of the first string in the
specified range of lines with the second string.

[line][,line] [?] R string1l "Z string2

As each occurrence of string1 is found, it is replaced
by string2. Each line in which a replacement occurs is
displayed. If a line contains two or more replace-
ments of stringl with string2, the line is displayed
once for each occurrence. When all occurrences of
string1 in the specified range are replaced by string2,
the R command terminates and the asterisk prompt
reappears.

If the question mark (?) parameter is given, the
REPLACE command stops at each line with a string
that matches string1, displays the line with string2 in
place, and then displays the prompt “O.K.?”. If you
press Y or the ENTER key, then string2 replaces
string1, and the next occurrence of string1 is found.
Again, the “O.K.?” prompt is displayed. This process
continues until the end of the range or until the end
of the file.

After the last occurrence of stringi1 is found, EDLIN
returns the asterisk prompt.

If any key besides Y or ENTER is pressed after the
“O.K.?” prompt, stringl is left as it was in the line,
and REPLACE goes to the next occurrence of string1.
Only the desired string1 is replaced, and the replace-
ment of embedded strings is prevented.

If a second string is to be given as a replacement, then
stringl must be terminated with a NZ.

4-34 DOS

Example:

If the string2 is omitted, then string1 may be terminat-
ed with either "Z+ENTER or simply ENTER. string2

must also be terminated with ~AZ+ENTER or with a —

simple ENTER.

If stringl is omitted, the replacement is terminated
immediately.

If string2 is omitted, string1 is deleted from all lines
in the range.

If the first line is omitted in the range argument (as in
,line) then the first line defaults to the line after the
current line.

If the second line is omitted (as in line or line,) the
second line defaults to #. # indicates the line after
the last line of the file. This is the same as line,#.

: This is a sample file

: used to demonstrate dynamic line numbers.
: See what happens when you

: fool around with

: those very useful commands that

: perform the two major editing functions,

: delete and insert

: (The D and I commands)

: (Use NZ to exit insert mode)

10: line numbers

11: The insert command can place new lines
12: anywhere in the file; no space problems.
13: Because the line numbers are dynamic,
14: they’ll slide all the way to 65533.

C.OOO\IO'JC.H»AOJN»—\

To replace all occurrences of stringl (and) with
string2 (or) in a specified range, enter:

2,12 Rand "Z or ENTER

Chapter 4 4-35

The result is:
5: those very useful commors that
7: delete or insert
8: (The D or I commands)
8: (The D or I commors)
11: The insert commor can place new lines

In the replacement, some unwanted substitutions
have occurred. To avoid these, and confirm each
replacement, the same original file can be used with a
slightly different command. To replace only certain
occurrences of the first string with the second string,
enter:

2? Rand ("Z or ENTER)

The result is:
5: those very useful commors that
OK.? N
7: delete or insert
OK.?Y
8: (The D or I commands)
OK?Y
8: (The D or I commors)
O.K.? N
11: The insert commor can place new lines
OK.? N
*.....
The LIST (L) command can be used to see the result
of all these changes:

5: those very useful commands that

7: delete or insert
8: (The D or I commands)

11: The insert command can place new lines

4-36 DOS

SEARCH (S) Command

Purpose: To search the specified range of lines for the specified
string.
Syntax: [line][,line] [?] Sstring

Comments: The string must be terminated with an ENTER. The
first line that matches string is displayed and be-
comes the current line. The SEARCH command ter-
minates when a match is found. If no line contains a
match for string, the message ‘“Not found” is dis-
played.

If the optional parameter, question mark (7), is in-
cluded in the command, EDLIN displays the first line
with a matching string; it then prompts you with the
message ‘‘O.K.7”. If you press either Y or ENTER, the
line becomes the current line and the search termi-
nates. If you press any other key, the search continues
until another match is found, or until all lines have
been searched; then the “Not found” message is
displayed.

If the first line is omitted (as in ,line Sstring), the first
line defaults to the line after the current line. If the
second line is omitted (as in line Sstring or line,
Sstring), the second line defaults to #, which is the
same as line,# Sstring. If string is omitted, no search
is made and the command terminates immediately.

Example: 1: This is a sample file
2: used to demonstrate dynamic line numbers.
3: See what happens when you
4: fool around with
5: those very useful commands that

Chapter 4 4-37

6: perform the two major editing functions,
7: delete and insert

8: (The D and I commands)

9: (Use /\Z to exit insert mode)

10: line numbers

11: The insert command can place new lines
12: anywhere in the file; no space problems.
13: Because the line numbers are dynamic,
14:*they’ll slide all the way to 65533.

To search for the first occurrence of the string
(and),enter:

2,12 Sand (ENTER)
The result is:
5:#those very useful commands that

To get to the and in line 7, modify the search
command by entering:

DEL F3,12 Sand (ENTER)

The search begins from the line after the current line
(line 5), since no first line is given. The result is:

7: delete and insert

To search through several occurrences of a string
until the correct string is found, enter:

1, ? Sand (ENTER)
The result is:

5:#those very useful commands that
O.K.7_

4-38 DOS

If any key except Y or ENTER is pressed, the search
continues. Type N to continue.

O.K.? N
Continue:

7:*delete and insert
O.K.7_

Press Y to terminate the search:

OK.?Y

*®

Chapter 4 4-39

WRITE (W) Command

Purpose:

Syntax:

Comments:

To write lines from the editing buffer to the output
file.

[n]W

The WRITE command is used when editing files that
are larger than available memory. By executing
WRITE, lines are written out to the output file, and
room is made in the editing buffer for more lines to be
appended from the input file.

If W is typed with no n (number of lines) parameter,

lines are written out until memory is one-quarter
full.

If the n parameter is given, n lines are written out.
Lines are written out beginning with the start of the
file (line 1). Subsequent lines in the editing buffer are
renumbered beginning with 1. A later APPEND com-
mand will append lines to any remaining lines in the
editing buffer.

4-40 DOS

4-3. EDLIN ERROR MESSAGES

EDLIN error messages occur either when EDLIN is invoked, or
during the actual editing session.

Errors When Invoking EDLIN

Cannot edit .BAK file—rename file

Cause:

Cure:

You have attempted to edit a file with the filename
extension .BAK. .BAK files cannot be edited because the
extension is reserved for back-up copies.

If you need the .BAK file for editing purposes, you must
either rename the file with a different extension, or copy
the .BAK file with a different filename extension.

No room in directory for file

Cause:

Cure:

When you attempted to create a new file, either the file
directory was full, or you specified an illegal disk drive or
an illegal filename.

Check the EDLIN invocation command line for illegal
filename or illegal disk drive entries. If the command is
no longer on the screen, and if you have not yet entered a
new command, the EDLIN invocation command can be
recovered by pressing the F3 key.

If the invocation command line contains no illegal en-
tries, run the CHKDSK program for the specified diskette.
If the status report shows the diskette directory full,
remove the diskette and insert and format a new diskette.
If the CHKDSK status report shows the diskette directory
is not full, check the EDLIN invocation command for an
illegal filename or illegal disk drive designation.

Chapter 4 4-41

Errors While Editing

Entry Error
Cause: The last command entered contained a syntax error.
Cure: Reenter the command with the correct syntax.

Line too long

Cause: During REPLACE command mode, the string given as the
replacement causes the line to expand beyond the limit of
254 characters. EDLIN aborts the REPLACE command.

Cure: Divide the long line into two lines, then retry the RE-
PLACE command.

Disk Full—file write not completed

Cause: You gave the END command, but the diskette did not
contain enough free space for the whole file. EDLIN
aborts the E command and returns to the operating
system. Some of the file may have been written to the
diskette.

Cure: Only a portion, if any, of the file will have been saved.
You should probably delete whatever file was saved and
restart the editing session. None of the file which was not
written out will be available after this error. Always be
sure that the diskette has sufficient free space for the file
to be written before beginning the editing session.

Chapter 5 5-1

5-1. INTRODUCTION TO DEBUG

DEBUG is a debugging program used to provide a controlled testing
environment for binary and executable object files. DEBUG elimi-
nates the need to reassemble a program to see if a problem has been
fixed by a minor change. It permits the alteration of file or CPU
register contents. Once altered, DEBUG can immediately reexecute
a program to check the validity of the changes.

All DEBUG commands may be aborted at any time by pressing
N"BREAK. "NUM LOCK suspends the display, so that you may read it
before it scrolls away. Pressing any key other than "BREAK or
ANUM LOCK restarts the display.

5-2 DOS

5-2. STARTING DEBUG

To start the DEBUG program, enter:
DEBUG [d:][filespec][parameter][arglist]

For example, if a filespec is specified, then the following is a typical
invocation:

DEBUG COMP.COM

At start-up, the segment registers are set to the bottom of free
memory, the instruction pointer is set to 0100H, the stack pointer is
set to the end of the segment (or the bottom of the transient portion of

COMMAND.COM), all flags are cleared, and the remaining registers
are set to zero.

DEBUG loads COMP.COM into memory, starting at 100 hexadecimal
in the lowest available segment. The BX:CX registers are loaded with
the number of bytes placed in memory.

arglist may be specified if filespec is present. These filename
parameters and switches are passed to the program filespec. When
filespec is loaded into memory, it is loaded as if it had been invoked
with the command:

filespec arglist

Here, filespec is the file to be debugged, and arglist is the rest of the
command line.

If no filespec is specified, DEBUG is invoked as follows:

DEBUG

DEBUG returns with the prompt, — , signaling that it is ready to
accept your commands. Since no filename has been specified,
current memory, disk sectors, or disk files can be worked on by
invoking later commands.

Chapter 5 5-3

5-3. DEBUG COMMANDS

Each DEBUG command consists of a single letter followed by one or
more parameters. Additionally, the control characters and the spe-
cial editing function keys described in Chapter 4, all apply to
DEBUG.

If a syntax error occurs in a DEBUG command, DEBUG reprints the

command line and indicates the error with a caret () and the word
ERROR.

For example:

DCS:100 CS:110
ANERROR

All commands and parameters may be entered in either upper and/or
lower case. |

The DEBUG commands are summarized below, and are described in
detail following the description of command parameters.

DEBUG Commands Summary

Command: Syntax:
C (COMPARE) C range address
D (DUMP) D [address [L value]]
D [range]
E (ENTER) E address [list]
F (FILL) F range list
G (GO) G [=address [address . . .]]

Continued

5-4 DOS

Continued
Command: Syntax:
H (HEX) H value value
I (INPUT) I address
L (LOAD) L [address [d: sector sector]]
M (MOVE) M range address
N (NAME) N filename [filename. . .]
O (OUTPUT) O address byte
Q (QUIT) Q
R (REGISTER) R [register name]
S (SEARCH) S range list
T [TRACE] T [= address][value]
U (UNASSEMBLE) U [address [L value]]
U [range]
W (WRITE) \'\ [addréss [d: sector sector]]

Parameters

As shown in the summary, all DEBUG commands accept parameters,
except the QUIT command. Parameters may be separated by delimit-
ers (spaces or commas), but a delimiter is required only between two
consecutive hexadecimal values. The following commands are
equivalent:

DCS:100 110
D CS:100 110
D,CS:100,110

Parameter:

i

byte

sector

value

address

range

Chapter 5 5-5

Definition:

A 1-digit hexadecimal value indicating which drive a
file is loaded from or written to. The valid values are 0

and 1. These values designate the drives as follows:
0=A: and 1=B..

A 1- or 2-digit hexadecimal value to be placed in, or
read from, an address or register.

A 1- to 3-digit hexadecimal value used to indicate the
logical record number on the diskette and the number
of diskette sectors to be written or loaded. Logical
records correspond to sectors. However, the number-
ing differs since the entire diskette space is
represented.

One to four hexadecimal value digits used to specify a
port number or the number of times a command is to
repeat its functions.

A 1- or 2-part designation which consists of either an
alphabetic segment register designation, or a 4-digit
segment address, plus an offset value. If the segment
designation or segment address is omitted, the default
segment is used. DS is the default segment for all com-
mands except GO, LOAD, TRACE, UNASSEMBLE,
and WRITE, for which the default segment is CS. All
numeric values are hexadecimal. For example:

CS:0100
04BA:0100

The colon is required between a segment designation
(whether numeric or alphabetic) and an offset.

Enter either of the following formats to specify the
upper and lower addresses of a range.

Continued

5-6 DOS

Parameter:

list

string

Definition:

address address
or
address L value

Example:

CS:100 110
CS:100 L 10

The following is illegal:

CS:100 CS:110
AERROR

The limit for range is 10000 hex.

A series of byte values or of strings. list must be the last
parameter on the command line. For example:

FCS:100 42 45 52 54 41

Any number of characters enclosed in quotation
marks. Quotation marks may be either single (‘) or
double (‘). Within string, the opposite set of quotation
marks may be used freely as literals. If the delimiter
quotation marks must appear within a string, the
quotation marks must be doubled. For example:

‘This “string”’ is valid.’
‘This * ‘string’’ is valid.’

‘This ‘string’ is not.’

“This ‘string’ is valid.”
““This ““ “string” "’ is valid.”

“This “string” is not.”

Chapter 5 5-7

Parameter: Definition:

Double quotation marks are not necessary in the fol-
lowing strings:

“This * ‘string’ ’ is not necessary.”
“This *“ “string’’ ”’ is not necessary.’

The ASCII values of the characters in the string are
used as a list of byte values.

5-8 DOS

COMPARE (C) Command

Purpose: To compare the portion of memory specified by range
to a portion of the same size beginning at address.

Syntax: C range address

Comments: If the two areas of memory are identical, there is no
display, and DEBUG returns with the DOS prompt. If
there are differences, they are displayed as:

address1 bytel byte2 address2
Example: The following commands have the same effect:

C100,200 300
C100L100 300

Each command compares the block of memory from -
100 to 200H, with the block of memory from 300 to
400H.

p—

Chapter 5 5-9

DUMP (D) Command

Purpose:

Syntax:

Comments:

To display the memory contents of either a single
address, a range of addresses, or the number of lines
specified by value beginning at the address specified.

D[address[L value]]
D[range]

If a single address only is specified, the contents of
128 bytes are displayed.

If a range of addresses is specified, the contents of the
range are displayed.

If the D command is entered without parameters, the
result is the same as if you specify a single address,
except that the display begins at the current location
in the data segment (DS).

The dump is displayed in two portions: a hexadeci-
mal dump (each byte is shown in hexadecimal value)
and an ASCII dump (the bytes are shown in ASCII
characters). Nonprinting characters are denoted by a
period (.) in the ASCII portion of the display.

Each displayed line begins on a 16-byte boundary and
the first line contains fewer bytes than the rest of the
displayed lines.

NOTE: Each display line shows 16 bytes with a
hyphen between the eighth and ninth bytes. When

5-10 DOS

the displays require more space than page width
permits, they are divided into two lines. For exam-
ple:

04B5:0100 42 45 52 54 41 20 54 00-20 42
4F 52 4C 41 4E 44 BERTA T. BORLAND

Examples: The command:
dcs:100 10F
displays:
04BA:0100 42 45 52 54 41 . . . 4E 44 BERTA T. BORLAND

Enter:

D

The display is formatted as described above. Each =

line of the display begins with an address incre-
mented by 16 bytes from the address on the previous
line. Each subsequent D (entered without parameters)
displays the bytes immediately following those last
displayed.

If you enter the command:
DCS:100 L 20
the display is formatted as described above, with all

bytes within the range of 100H to 120H in the CS
segment displayed.

Chapter 5 5-11

If you enter the command:
DCS:100 115

the display is formatted as described above, with all
the bytes in the range from 100H to 115H in the CS
segment displayed.

5-12 DOS

ENTER (E) Command

Purpose: To enter the address, display its contents, and wait
for input.
Syntax: E address [list]

Comments: If the optional list of hexadecimal values is entered,
the replacement of byte values occurs automatically.
If an error occurs, no byte values are changed.

If the address is entered without the optional list,
DEBUG displays the address and its contents, then
repeats the address on the next line and waits for
your input. The ENTER command performs one of the
following actions:

1. Replace a byte value with a value you type in.
You type the value after the current value. If the -
value typed in is not a legal hexadecimal value,
or if more than two digits are typed, a beep
sounds and the illegal or extra character is not
echoed.

2. Press the SPACEBAR to advance to the next byte.
To change the value, enter the new value as
described above. If you space beyond an 8-byte
boundary, DEBUG starts a new display line with
the address displayed at the beginning.

3. Type a hyphen (-) to return to the preceding byte.
If you decide to change a byte behind the current
position, typing the hyphen returns the current
position to the previous byte. When the hyphen
is typed, a new line is started with the address —
and its byte value displayed.

Examples:

Chapter 5 5-13

4. Press the ENTER key to terminate the ENTER
command. The ENTER key may be pressed at any
byte position.

ECS:100

DEBUG displays:

04BA:0100 EB._
To change this value to 41, enter 41 as shown:

04BA:0100 EB.41_

To step through the subsequent bytes, press the
SPACEBAR:

04BA:0100 EB.41 10. 00. BC._
To change BC to 42:

04BA:0100 EB.41 10. 00. BC.42_
To correct 10 to 6F, enter the hyphen as many times
as needed to return to byte 0101 (value 10), then
replace 10 with 6F:

04BA:0100 EB.41 10. 00. BC.42—

04BA:0102 00.—
04BA:0101 10.6F_

When you press the ENTER key, it ends the ENTER
command and returns to the DEBUG command level.

9-14 DOS

FILL (F) Command

Purpose:

Syntax:

Comments:

Example:

To fill the addresses in range with the values in the
list.

F range list

If the range contains more bytes than the number of
values in the list, the list is used repeatedly until all
bytes in the range are filled.

If the list contains more values than the number of
bytes in the range, the extra values in the list are
ignored.

If any of the memory in the range is not valid (bad or
nonexistent), the error is propagated into all succeed-
ing locations.

The FILL command does not abort as the ENTER
command does. The FILL command is a multiple
version of the ENTER command that allows you to
change more than one address at a time.

FO04BA:100 L 100 42 45 52 54 41

DEBUG fills memory locations 04BA:100 through
04BA:200 with the bytes specified. The five values are
repeated until all 100H bytes are filled.

Chapter 5 5-15

GO (G) Command

Purpose:
Syntax:

Comments:

To execute the program currently in memory.
G [=address [address . . .]]

If the GO command is entered alone, the program
executes as if it had run outside DEBUG.

If =address is set, execution begins at the address
specified. If the segment designation is omitted from
=address, only the instruction pointer is set. If the
segment designation is included in =address, both
the CS segment and the instruction pointer are set.
The equals sign (=) is required so that DEBUG can
distinguish the start =address from the breakpoint
addresses.

When program execution reaches the address of a
breakpoint, execution halts and control is returned to
DEBUG. All registers, flags, and the decoded instruc-
tion are displayed for the last instruction executed.
The result is the same as if you had entered the
REGISTER command for the breakpoint address.

Enter the GO command again to resume execution.

As many as 10 breakpoints may be set. Breakpoints
may be set only at addresses containing the first byte
of an 8086 opcode. If more than 10 breakpoints are
set, DEBUG returns the BP error message.

The user stack pointer must be valid and must have
six bytes available for this command.

5-16 DOS

Example:

The GO command uses an IRET instruction to cause a
jump to the program under test. The user stack
pointer is set, and the user flags, code segment -
register, and instruction pointer are pushed onto the
user stack. If the user stack is not valid, or is too
small, DOS may crash.

An interrupt code (0CCH) is placed at the specified
breakpoint address(es). When an instruction with the
breakpoint code is encountered, all breakpoint ad-
dresses are restored to their original instructions. If
execution is not halted at one of the breakpoints, the
interrupt codes are not replaced with the original
instructions.

GCS:7550

The program currently in memory executes up to the
address 7550 in the CS segment. DEBUG displays
registers and flags, and the GO command is terminat-

ed.

After a breakpoint has been encounterd, if the GO
command is entered again, and the program executes
as if you had entered the filename at the DOS com-
mand level. The only difference is that program
execution begins at the instruction after the break-
point, rather than at the usual start address.

Chapter 5 5-17

HEX (H) Command

Purpose:

Syntax:

Comments:

Example:

To perform hexadecimal arithmetic on two parame-
ters.

H value value

DEBUG adds the two parameters, then subtracts the
second parameter from the first. The results of the
arithmetic is displayed on one line; first the sum, then
the difference.

H19F 10A

DEBUG performs the calculations and then returns
the results:

02A9 0095

5-18 DOS

INPUT (I) Command

Purpose: To input and display one byte from the port specified
by address.
Syntax: I address

Comments: A 16-bit port address is allowed.

Example: I2F8

If the byte at the port is 42H, DEBUG inputs the byte
and displays the value:

42

Chapter 5 5-19

LOAD (L) Command

Purpose:
Syntax:

Comments:

To load a file into memory.
L [address [d: sector sector]]

Set BX:CX to the number of bytes read. The file must
have been named either with the DEBUG invocation
command or with the NAME command. Either the
invocation or the NAME command formats a file-

name properly in the normal format of a file control
block at CS:5C.

If the LOAD command is given without any parame-
ters, DEBUG loads the file into memory beginning at
address CS:100 and sets BX:CX to the number of
bytes loaded.

For example:

A>DEBUG
—NFILE.COM

To load FILE.COM, enter:

L

If LOAD command is entered with an address param-

eter, loading begins at the memory address speci-
fied.

If LOAD is entered with all parameters, absolute
diskette sectors are loaded, rather than a file. The
records are taken from the drive specified. The drive
specifier is numeric; for example, 0=A: and 1=B..

5-20

DOS

DEBUG begins loading with the first sector specified,
and continues until the number of sectors specified in
the second sector have been loaded.

For example:
LL0O4BA:100 1 OF 6D

DEBUG loads 109 (6D hex) sectors, beginning with
logical sector number 15 (OF hex), into memory
beginning at address 04BA:0100. When the sectors
have been loaded, the DEBUG prompt returns.

If the file has a .EXE extension, it is relocated to the
load address specified in the header of the .EXE file;
the address parameter is always ignored for .EXE
files. The header is stripped off the .EXE file before it
is loaded into memory; the size of a .EXE file on
diskette differs from its size in memory.

If the file named by the NAME command, or specified
on invocation, is a .HEX file, entering LOAD with no

parameters causes loading of the file to begin at the
address specified in the .HEX file.

If the LOAD command includes the option address,
DEBUG adds the address specified in LOAD to the
address found in the .HEX file to determine the start
address for loading the file.

Chapter 5 5-21

MOVE (M) Command

Purpose:

Syntax:

Comments:

Example:

To move the block of memory specified by range to
the location beginning at the specified address.

M range address

Overlapping moves (moves where part of the block
overlaps some of the current addresses) are always
performed without loss of data. Addresses that could
be overwritten are moved first.

To move from higher addresses to lower addresses,
move data beginning at the block’s lowest address
and work towards the highest. To move from lower
addresses to higher addresses, move data beginning
at the block’s highest address and work towards the
lowest. "

If the addresses in the block being moved will not
have new data written to them, the existing data
remains. The sequence of the move is important
because the MOVE command copies the data from
one area into another, in the sequence described, and
writes over the new addresses.

Enter:
MCS:100 110 CS:500

DEBUG first moves address CS:110 to address CS:510;
then CS:10F to CS:50F, and so on until CS:100 is
moved to CS:500. Enter the DUMP command, using
the address entered for the MOVE command, to
review the results of the move.

9-22 DOS

NAME (N) Command

Purpose:
Syntax:

Comments:

To set filenames.
N filename [filename . . .]

The NAME command performs two distinct func-
tions, both associated with filenames.

First, NAME is used to assign a filename for a later
LOAD or WRITE command. If you invoke DEBUG

without naming any file to be debugged, the NAME
command must be given before a file can be loaded.

Second, NAME is used to assign filename parameters
to the file being debugged. In this case, NAME accepts
a list of parameters used by the file being debugged.

These functions overlap. Consider the following set
of DEBUG commands:

—NFILE1.EXE
L
sl

NAME assigns the filename FILE1.EXE to the file-
name to be used in any later LOAD or WRITE
commands.

NAME also assigns the filename FILE.EXE to the first
filename parameter to be used by any program that is
later debugged.

LOAD loads FILE.EXE into memory.

Chapter 5 5-23

GO causes FILE.EXE to be executed with FILE.EXE as
the single filename parameter; for example, FILE.EXE
is executed as if FILE FILE.EXE had been typed at the
command level.

—NFILE1.EXE

—L

—NFILE2.DAT FILE3.DAT
—G

NAME sets FILE1.EXE as the filename for the subse-
quent LOAD command. The LOAD command loads
FILE1.EXE into memory, and then the NAME com-

mand is used again, to specify the parameters to be
used by FILE1.EXE.

When the GO command is executed, FILE1.EXE is
executed as if FILE1 FILE2.DAT FILE3.DAT had been
typed at the DOS command level.

If a WRITE command were executed at this point,
FILE1.EXE, the file being debugged, would be saved
with the name FILE2.DAT. To avoid such undesired
results, always execute a NAME command before
either LOAD or WRITE command.

Four regions of memory can be affected by the NAME
command:

CS:5C FCB for file 1.

CS:6C FCB for file 2.

CS:80 Count of characters.
CS:81 All characters entered.

A file control block (FCB) for the first filename
parameter given to the NAME command is set up at
CS:5C. If a second filename parameter is given, an
FCB is set up for it beginning at CS:6C. The number of

9-24 DOS

Example:

characters typed in the NAME command, exclusive of
N, is given at location CS:80. The actual stream of
characters given by the NAME command, exclusive .
of N, begins at CS:81. This stream of characters may
contain any switches and delimiters that would be
legal in any command typed at the DOS command
level.

DEBUG PROG.COM
—NPARAM1 PARAM?2/C
{2

—_—

The GO command executes the file in memory as if
the following command line had been entered:

PROG PARAM1 PARAM2/C

Testing and debugging reflect a normal runtime envi-
ronment for PROG.COM.

Chapter 5 5-25

OUTPUT (O) Command

Purpose: To send the specified byte to the output port
specified by address.
Syntax: O address byte

Comments: A 16-bit port address is allowed.
Example: Enter:
O2F8 4F

DEBUG outputs the byte value 4F to output port 2F8.

5-26 DOS

QUIT (Q) Command

Purpose:
Syntax:

Comments:

Example:

To terminate DEBUG.

Q

The QUIT command takes no parameters, exits
DEBUG without saving the file currently being operat-
ed on, and returns to the DOS commands level.

Enter:

Q

DEBUG is terminated, and control returns to the DOS
command level.

Chapter 5 5-27

REGISTER (R) Command

Purpose: To display the contents of one or more CPU registers.
Syntax: R [register name]

Comments: If no register name is entered, the REGISTER com-
mand dumps the register-save area and displays the
contents of all registers and flags.

If a register name is entered, the 16-bit value of that
register is displayed in hexadecimal, and a colon
appears as a prompt. Either enter a value to change
the register, or press the ENTER key if no change is
wanted.

The only valid register names are:

AX BP SS
BX SI CS
CX DI A5
DX DS PC
SP ES F

IP and PC both refer to the instruction pointer.

Any other entry for register name results in a BR error
message.

If F is entered as the register name, DEBUG displays
a two-character alphabetic code. To alter the flag,
enter the opposite two-letter code. The flags are
either set or cleared. The flags and their set and clear
codes are listed in Table 5-1.

5-28

DOS

Table 5-1.

Set and Clear Codes for Flags
Flag Name: Set: Clear:
Overflow 0)Y NV
Direction DN decrement UP increment
Interrupt EI enabled DI disabled
Sign NG negative PL plus
Zero ZR NZ
Auxiliary AC NA

Carry

Parity PE even PO odd
Carry CY NC

Whenever you enter the command RF, the flags are
displayed in a row at the beginning of a line in the
order shown above. At the end of the list of flags,
DEBUG displays a static hyphen (—).

New flag values may be entered as alphabetic pairs,
and may be entered in any order. Spaces are not
required between the flag entries.

To exit the REGISTER command, press the ENTER
key. Flags for which new values were not entered
remain unchanged.

If more than one value is entered for a flag, DEBUG
returns a DF error message. If a flag code other than
those shown above, is entered, DEBUG returns a BF
error message. In both cases, flags up to the error in
the list are changed; flags at and after the error are not.

e

Examples:

Chapter 5 5-29

When you enter R, DEBUG displays all registers, flags,
and the decoded instruction for the current loca-
tion.

When you enter RF, DEBUG displays the flags:

NV UP DI NG NZ AC PE NC — _

Enter any valid flag designations, in any order, with
or without spaces. For example, enter:

NV UP DI NG NZ AC PE NC — PLEICY

DEBUG responds with only the DEBUG prompt. To
see the changes, enter the DUMP, REGISTER, or RF
command:

RF
NV UP EI PL NZ AC PE CY — _

Press ENTER to leave the flags this way, or to enter
different flag values.

5-30 DOS

SEARCH (S) Command

Purpose: To search the specified range for the specified list of
bytes.
Syntax: S range list

Comments: The list may contain one or more bytes, each separat-
ed by a space or comma.

If the list contains more than one byte, only the first
address of the byte string is returned.

If the list contains only one byte, all addresses of the
byte in the range are displayed.

Example: Enter:
SCS:100 110 41
DEBUG displays:

04BA:0104
04BA:010D

—

Chapter 5 5-31

TRACE (T) Command

Purpose:

Syntax:

Comments:

Example:

To execute one instruction, and display the contents
of all registers, flags, and the decoded instruction.

T [=address][value]

If the optional =address is entered, tracing occurs at
the =address specified. If =address includes the
segment designation, then both CS and the instruc-
tion pointer are specified. If =address omits the
segment designation, only the instruction pointer is
specified. The optional value causes DEBUG to exe-
cute and trace the number of steps specified by value.

When you enter T, DEBUG returns a display of the

registers, flags, and decoded instruction for that one
instruction.

Enter:

T=011A 10

9-32

DOS

DEBUG executes 16 (10 hex) instructions, beginning
at 011A in the current segment, and then displays all

registers and flags for each instruction as it is execut- _

ed. The display scrolls away until the last instruction
is executed, then stops, and displays the register and
flag values for the last few instructions performed.
ANUM LOCK suspends the display at any point, so
that the registers and flags can be studied for any
instruction.

Chapter 5 5-33

UNASSEMBLE (U) Command

Purpose:

Syntax:

Comments:

To unassemble bytes and display the source state-
ments that correspond to them, along with addresses
and byte values.

U [address [L value]
U [range]

The display of unassembled code looks like a listing
for an assembled file.

If the UNASSEMBLE command is entered without
parameters, 20 hexadecimal bytes are unassembled to
show corresponding instructions.

If the UNASSEMBLE command is entered with the
range parameter, DEBUG unassembles all bytes in the
range, up to 20 hexadecimal bytes.

If there are fewer bytes in the range than the number
displayed when U is entered without parameters,
only the bytes in the range are displayed.

If the UNASSEMBLE command is entered with the
address parameter, DEBUG unassembles the default
number of bytes, beginning at the address specified.

If the UNASSEMBLE command is entered with the
address [L value] parameters, DEBUG unassembles
all bytes, beginning at the address specified, for the
number of lines specified by value.

Entering U with the address [L value] parameters
overrides the default limit (20H bytes).

5-34 DOS

Example:

Enter:
U04BA:100

DEBUG unassembles 16 bytes, beginning at address
04BA:0100:

04BA:0100 206472 AND [SI+72],AH

04BA:0103 69 DB 69

04BA:0104 7665 JBE 016B
04BA:0106 207370 AND [BP+DI+70],DH
04BA:0109 65 DB 65

04BA:010A 63 DB 63

04BA:010B 69 DB 69

04BA:010C 66 DB 66

04BA:010D 69 DB 69

04BA:010E 63 DB 63

04BA:010F 61 DB 61

Enter: —

U04BA:0100 0108
The display shows:
04BA:0100 206472 AND [SI+72],AH
04BA:0103 69 DB 69
04BA:0104 7665 JBE 016B
04BA:0106 207370 AND [BP+DI+70],DH
Enter:

U04BA:100 120

The display appears exactly as above with the
UCS:100 command.

Enter:

UCS:100 L 20

Chapter 5 5-35

All the bytes from address CS:100 through address
CS:120 are unassembled and displayed. This applies
to both display formats.

If the bytes in some addresses are altered, the instruc-
tion statements are altered. The UNASSEMBLE com-
mand can be entered for the changed locations, the
new instructions viewed, and the unassembled code
used to edit the source file.

5-36 DOS

WRITE (W) Command

Purpose: To write the file being debugged to a disk file.
Syntax: W [address [d: sector sector]]

Comments: If W is entered without parameters, BX:CX must
already be set to the number of bytes to be written; the
file is written beginning from CS:100.

If the WRITE command is given with only an address,
the file is written beginning at that address.

If a GO or TERMINATE command is given, BX:CX
must be reset before using the WRITE command
without parameters.

If a file is loaded and modified, the name, length, and
starting address are all set correctly to save the
modified file, as long as the length has not changed.

The file must have been named, either during DEBUG
invocation, or with the NAME command. Both the
invocation and the NAME command format a file-

name properly in the normal format of a file control
block at CS:5C.

If the WRITE command is given without parameters,
BX:CX must be set to the number of bytes to be
written. DEBUG writes the BX:CX number of bytes to
the disk file. The debugged file is written to the
diskette from which it was loaded, and is written over
the original file.

Example:

Chapter 5 5-37

If the WRITE command is given with parameters, the
write begins from the memory address specified; the
file is written to the drive specified. The drive specifi-
er is numeric: 0=A: or 1=B:. DEBUG writes the file
beginning at the logical sector number specified by
the first sector; and continues until the number of
sectors specified in the second sector have been
written.

NOTE: Writing to absolute sectors is extremely dan-
gerous because the process bypasses the file handler.

Enter:

W

DEBUG writes out the file to diskette, and displays
the DEBUG prompt:

\%

Enter:
WCS:100 1 37 2B

DEBUG writes out the contents of memory, beginning
with the address CS:100, to the diskette in Drive B:.
The data written out starts in disk logical sector
number 37H, and consists of 2BH sectors. When the
write is complete, DEBUG displays the prompt:

WCS:100 1 37 2B

5-38 DOS

5-4. DEBUG ERROR MESSAGES

During the DEBUG session, any of the following error messages may
appear. Each error terminates the DEBUG command with which it is
associated, but does not terminate DEBUG itself.

Error Code: Definition:

BF Bad flag. Retry the REGISTER (RF) command with the
correct flag code setting.

BP Breakpoints. The GO command can have no more
than 10 breakpoints.

BR Bad register. Retry the REGISTER (R) command with
a correct register name.

DF Double flag. A single flag had conflicting codes

specified. A flag is permitted to be changed only once

per REGISTER (RF) command.

Chapter 6 6-1

6-1. OVERVIEW

Capabilities of the Linker Utility

LINK is a virtual linker, which can link programs too large for
available memory.

LINK produces relocatable executable object code.
LINK handles user-defined overlays.

LINK prompts the operator for input and output modules and other
link session parameters.

LINK runs with an automatic response file to answer the linker
prompts.

The output file from LINK (run file) is not bound to specific memory
~ addresses and, therefore, can be loaded and executed at any conve-
nient address by the operating system.

LINK uses a dictionary-indexed library search method, substantially
reducing link time for sessions involving library searches.

LINK is capable of linking files totaling 384 Kbytes.

LINK Operation Summary

LINK combines several object modules into one relocatable load
module, or run file.

As it combines modules, LINK resolves external references between
object modules and can search multiple library files for definitions
- for any external references left unresolved.

LINK also produces a list file that shows external references resolved
and any error messages.

6-2 DOS

LINK uses available memory as much as possible. When available
memory is exhausted. LINK then creates a temporary disk file
(VM.TMP) and becomes a virtual linker.

A block diagram of LINK operation is shown in Figure 6-1.

Non-Assembly Assembly
Source source
! !
Compiler Assembler
.OB]J .OB]J OBJ] | | .0BJ .OB]J .OB]J
. | LINK [—
Libraries [¢ = | Listing
.LIB LST
As Many as Eight PUBLIC Symbols
Libraries May be Cross-Referenced
Searched
Run File
EXE VM. TMP
Used Only if Run
File is Larger
Than Memory

Figure 6-1. LINK Operation Block Diagram.

Chapter 6 6-3

Definitions

Three important terms appear in this chapter. These terms describe
the underlying functioning of LINK. An understanding of the con-

cepts that define these terms provides a basic understanding of the
way LINK works.

1.

Segment. A segment is a contiguous area of memory up to 64
Kbytes in length. A segment may be located anywhere in
memory on a paragraph (16-byte) boundary. The contents of a
segment are addressed by a segment-register/offset pair.

Group. A group is a collection of segments which fit within 64
Kbytes of memory. The segments are named according to
group by the assembler, or compiler.

The group is used for addressing segments in memory. Each
group is addressed by a single segment register. The segments
within the group are addressed by the segment register plus an
offset. LINK verifies that the object modules of a group meet
the 64-Kbyte constraint.

Class. A class is a collection of segments. The naming of
segments to a class controls the order and relative placement
of segments in memory. The class name is specified by the
assembler or compiler. Segments of-a class are loaded into
memory contiguously. The segments are ordered within a
class in the order LINK encounters the segments in the object
files. One class precedes another in memory only if a segment
for the first class precedes all segments for the second class in
the input to LINK. Classes may be loaded across 64-Kbyte
boundaries. The classes are divided into groups for addres-
sing.

6-4 DOS

6-2. COMBINING AND ARRANGING

SEGMENTS

LINK works with four combine types, which are declared in the
source module for the assembler or compiler: private, public, stack,
and common.

LINK combines segments for these combine types as follows:

Private

A

A!

Public

A

A’

Common

A

A!

A!

Private segments are loaded separately and
remain separate. They may be physically con-
tiguous, but not logically, even if the segments
have the same name. Each private segment has
its own base address.

Public segments of the same name and class
name are loaded contiguously. Offset is from
beginning of first segment loaded through last
segment loaded.There is only one base address
for all public segments of the same name and
class name. Combine types stack and memory
are treated the same as public; however, the
stack pointer (SP) is set to the first address of
the first stack segment.

Common segments of the same name and class
name are loaded, overlapping one another.
There is only one base address for all common
segments of the same name. The length of the
common area is the length of the longest seg-
ment.

Chapter 6 6-5

Placing segments in a group in the assembler provides offset
addressing of items from a single base address for all segments in
that group.

DS:DGROUP —— XXXXO0H 0 — Relative offset

A
Any number of
other segments B
may intervene > FOO
between segments G
of a group. Thus, An operand of
the offset of FOO DGROUP: FOO
may be greater than returns the offset of
the size of segments FOO from the beginning
in group combined, but of the first segment of
no larger than 64 Kbytes. DGROUP (here, segment A).

Segments are grouped by declared class names. LINK loads all the
segments belonging to the first class name encountered, then loads
all the segments of the next class name encountered, and so on until
all classes have been loaded.

If your program contains: They will be loaded as:
A SEGMENT 'FOO’ 'FOO’
B SEGMENT ’BAZ’ A
C SEGMENT ’BAZ’ E
D SEGMENT ’Z0O0O’ 'BAZ’
E SEGMENT 'FOO’ B
C
'Z0O0O’

D

6-6 DOS

When writing assembly language programs, control over the order-
ing of classes in memory is done by writing a dummy module. After

writing the module list it first after the LINK Object Modules prompt.

The dummy module declares segments into classes in the order you
want the classes loaded.

##+CAUTION #
Do not use this method with BASIC, COBOL, FORTRAN, or Pascal
programs. Allow the compiler and the linker to perform their tasks

in the normal way.

For example:

A SEGMENT °'CODE’

A ENDS

B SEGMENT °CONST’

B ENDS

C SEGMENT °’DATA’

C ENDS

D SEGMENT STACK 'STACK’
D ENDS

E SEGMENT °'MEMORY’

E ENDS

Caution should be taken to declare all classes to be used in your
program in this module. If you do not, you lose absolute control over
the ordering of classes. To have memory combine type to be loaded
as the last segments of your program, you can use this method.

Simply add MEMORY between SEGMENT and '"MEMORY’ in the E
segment line above. Note, however, that these segments are loaded
last only because you imposed this control on them, not because of
any inherent capability in the linker or assembler operations.

Chapter 6 6-7

6-3. FILES USED BY LINK

LINK works with one or more input files, producing two output files.
Additionally, LINK may create a virtual memory file, and may be
directed to search one to eight library files. For each type of file, you
may give a three-part file specification. The format for LINK file
specifications is:

d:filename.ext
where:

d: is the drive specifier. The colon is always required as part of the
drive specifier.

filename is any legal filename of one to eight characters.

.ext is an one-to-three character extension to the filename. The
period is always required as part of the extension.

LINK Input Files

If no extensions are given in the input (object) file specifications,
LINK recognizes by default:

File: Default Extension:
Object .OB]J
Library LIB

6-8 DOS

LINK Output Files

LINK appends to the output (run and list) files the following default .
extensions:

File: Default Extension:
Run .EXE (may not be overridden)
List .MAP (may be overridden)

VM.TMP File

LINK uses available memory for the link session. If the files to be
linked create an output file that exceeds available memory, LINK
creates a temporary file and names it VM.TMP. If LINK needs to
create VM.TMP, it displays the message:

VM.TMP has been created
Do not change diskette in drive (A: or B:)

Once this message is displayed, you must not remove the diskette
from the default drive until the link session ends. If the diskette is

removed, the operation of LINK is unpredictable, and LINK might
return the error message:

Unexpected end of file on VM. TMP

LINK uses VM.TMP as a virtual memory. The contents of VM.TMP
are subsequently written to the file named following the Run File:
prompt. VM.TMP is a working file only and is deleted at the end of
the linking session.

% *CAUTION * * *

Do not use VM.TMP as a file name for any file. If the user has a file
named VM.TMP on the default drive and LINK requires the
VM.TMP file, LINK will delete the VM.TMP on disk and create a
new VM.TMP. Thus, the contents of the previous VM.TMP file will
be lost.

Chapter 6 6-9

6-4. RUNNING LINK

Running LINK requires two types of commands: a command to
invoke LINK and a command to answer command prompts. Six
switches control alternate LINK features.

Command Prompts

LINK is commanded by entering responses to four text prompts.
When you have entered a response to the current prompt, the next
appears. When the last prompt has been answered, LINK begins
linking automatically without further command. When the link
session is finished, LINK exits to the operating system. If the link
session is unsuccessful, LINK returns the appropriate error mes-
sage.

LINK prompts you for the names of object, run, list files, and for
libraries. The prompts are listed in their order of appearance. For
prompts which can default to preset responses, the default response
is shown in square brackets ([]) following the prompt. The Object
Modules: prompt is followed by only a filename extension default
response because it has no preset filename response and requires a
filename from the operator.

Object Modules [.OB]]:

Enter a list of the object modules to be linked. LINK assumes, by
default, that the filename extension is .OB]J. If an object module has
any other filename extension, the extension must be given here.
Otherwise, the extension may be omitted.

Modules must be separated by blank spaces or plus signs (+).
Remember that LINK loads segments into classes in the order

encountered. Use this information for setting the order in which the
object modules are entered.

6-10 DOS

Run File [First-Object-filename.EXE]:

The filename entered will be created to store the run (executable) file —

that results from the link session. All run files receive the filename
extension .EXE, even if you specify an extension (the user-specified
extension is ignored).

If no response is entered to the Run File: prompt, LINK uses the first
filename entered in response to the Object Modules: prompt as the
run filename.

Example:
Run File [FUN.EXE]: B:PAYROLL/P

This response directs LINK to create the run file PAYROLL.EXE on
the diskette in Drive B:. Also, LINK will pause, which allows you to
insert a new diskette to receive the run file.

List File [NUL.MAP]:

The list file contains an entry for each segment in the input (object)

modules. Each entry also shows the offset (addressing) in the run
file.

The default response is the NUL filename which specifies that no list
file will be created.

Libraries [.LIB]:
The valid responses are zero to eight library filenames. Library files
must have been created by a library utility. LINK assumes, by

default, that the filename extension is .LIB for library files.

Library filenames must be separated by blank spaces or plus signs

(+).

Chapter 6 6-11

LINK searches the library files in the order listed to resolve external
references. When it finds the module that defines the external
symbol, LINK processes the module as another object module.

If LINK cannot find a library file on the diskettes in the disk drives, it
returns the message:

Cannot find library library-name
Enter new drive letter:

Simply press the letter for the drive specifier (for example, B).

LINK does not search within each library file sequentially. LINK
uses a method called dictionary-indexed library search. This means
that it finds definitions for external references by index access rather
than searching from the beginning of the file to the end for each
reference. This indexed search substantially reduces the link time
for any sessions involving library searches.

Switches

The six switches control alternate linker functions. Switches must
be entered at the end of a prompt response, regardless of which
method is used to invoke LINK. Switches may be grouped at the end
of any one of the responses, or may be scattered at the end of several.
If more than one switch is entered at the end of one response, each
switch must be preceded by a slash (/).

All switches may be abbreviated, from a single letter through the
whole switch name. The only restriction is that an abbreviation must
be a sequential substring from the first letter through the last entered;

no gaps or transpositions are allowed. For example, for the switch
IDSALLOCATE:

Legal: [llegal:
/D /DSL
/DS IDAL
[DSA /DLC

IDSALLOCA /DSALLOCT

6-12 DOS

The switches used in LINK are:
/IDSALLOCATE

Use of the /DSALLOCATE switch directs LINK to load all data
(DGROUP) at the high end of the data segment (DS). Otherwise, LINK
loads all data at the low end of DS. At runtime, the DS pointer is set
to the lowest possible address and allows the entire DS segment to be
used. Use of the /DSALLOCATE switch in combination with the
default load low (that is, the /HIGH switch is not used), permits the
user application to dynamically allocate any available memory
below the area specifically allocated within DGROUP, yet to remain
addressable by the same DS pointer. This dynamic allocation is
needed for Pascal and FORTRAN programs.

NOTE: Your applications program may dynamically allocate up to 64
Kbytes (or the actual amount available) less the amount allocated
within DGROUP.

/HIGH

Use of the /HIGH switch causes LINK to place the run image as high
as possible in memory. Otherwise, LINK places the run file as low as
possible.

#+*CAUTION ***

Do not use the /HIGH switch with Pascal or FORTRAN programs.

/LINENUMBERS

Use of the /[LINENUMBERS switch directs LINK to include in the list
file the line numbers and addresses of the source statements in the
input modules. Otherwise, line numbers are not included in the list

file.

NOTE: Not all compilers produce object modules that contain line
number information. In these cases, of course, LINK cannot include
line numbers.

Chapter 6 6-13

/MAP

/MAP directs LINK to list all public (global) symbols defined in the
input modules. If /MAP is not given, LINK will list only errors
(which includes undefined globals).

The symbols are listed alphabetically. For each symbol, LINK lists its

value and its segment:offset location in the run file. The symbols are
listed at the end of the list file.

/PAUSE

The /PAUSE switch causes LINK to pause in the link session when
the switch is encountered. Normally, LINK performs the linking
session without stopping from beginning to end. This allows you to
exchange the diskettes before LINK outputs the run (.EXE) file.

When LINK encounters the /PAUSE switch, it displays the mes-
sage:

About to generate .EXE file
Change disks hit any key

LINK resumes processing when you press any key.

#* *CAUTION *# *

Do not exchange the diskette which will receive the list file, or the
diskette used for theVM.TMP file, if created.

/STACK:number

number represents any positive numeric value (in hexadecimal
radix) up to 65536 bytes. If the /STACK switch is not used for a link
session, LINK calculates the necessary stack size automatically.

If a value from 1 to 511 is entered, LINK uses 512.

6-14 DOS

All compilers and assemblers should provide information in the
object modules that allow the linker to compute the required stack
size.

At least one object (input) module must contain a stack allocation
statement. If not, LINK will return a WARNING: NO STACK STATE-
MENT error message.

Invoking LINK

LINK may be invoked in three ways. By the first method, you enter
the commands in response to individual prompts. By the second
method, you enter all commands on the line used to invoke LINK. By
the third method, you create a response file that contains all the
necessary commands.

Summary of Methods Used to Invoke LINK:

Method 1 LINK

Method 2 LINK filenames|[/switches]

Method 3 LINK @ filename

Method 1, LINK:
Enter:

LINK

LINK will be loaded into memory. Then, LINK returns a series of
four text prompts that appear one at a time. Answer the prompts as
commands to LINK to perform specific tasks.

When entering the LINK command, you may enter one or more
switches, each of which must be preceded by a slash mark. If a
switch is not included, LINK defaults to not performing the function
described for the switches Tables 6-1 and 6-2.

Chapter 6 6-15

Table 6-1.

Command Prompt Summary

Prompt:

Object Modules [.OB]J]:

Run File [object-file.EXE]:

List File [NUL.MAP]:

Libraries [.LIB]:

Responses:

List .OB]J files to be linked, separated by
a blank space or plus sign. If a plus sign
is the last character entered, the
prompt will reappear. No default re-
sponse is required

filename for executable object code.
The default is first-object-filename.
EXE.

filename for listing. The default is RUN
filename.

List filenames to be searched, separated
by blank spaces or plus signs. If the
plus sign is last character entered, the
prompt will reappear. The default is no
search.

Table 6-2.

Linker Switch Parameters

Switch: Action:

/DSALLOCATE Load data at high end of data segment. Required
for Pascal and FORTRAN programs.

/HIGH Place run file as high as possible in memory. Do
not use with Pascal or FORTRAN programs.

/LINENUMBERS Include line numbers in list file.

Continued

6-16 DOS

Continued

/MAP

/PAUSE

/STACK:number

List all global symbols with definitions.

Halt linker session and wait for the ENTER key to
be pressed.

Set fixed stack size in run file.

Command Characters

LINK provides three command characters.

+

Use the plus sign (+) to separate entries and to
extend the current physical line following the
Object Modules and Libraries prompts. A blank or
space may be used to separate object modules.

To enter a large number of responses (each which
may also be very long), enter a plus sign at the end
of the physical line (to extend the logical line). If
the plus sign is the last entry following these two
prompts, LINK will prompt you for more modules
names.

When the Object Modules or Libraries prompt
appears again, continue to enter responses. When
all the modules to be linked have been listed,
verify that the response line ends with a module
name; not a plus sign.

Examples:

Object Modules [.OBJ]: FUN TEXT TABLE CARE
Object Modules [.OBJ]: FOOD+JUNQUE
Object Modules [.OBJ]]: CORSAIR

Enter a single semicoln (;) at any time after the
first prompt (from Run File on) to select default

ABREAK

Chapter 6 6-17

responses to the remaining prompts. This feature
saves time.

NOTE: Once the semicolon has been entered, you
can no longer respond to any of the prompts for
that link session. Therefore, do not use the semico-
lon to skip over some prompts.

Example:

Object Modules [.OBJ]: FUN TEXT TABLE CARE
Run Module [FUN.EXE]:; (ENTER)

The remaining prompts will not appear, and LINK
will use the default values (including FUN.MAP
for the List File).

Use ABREAK at any time to abort the link session.
If you enter an erroneous response, such as the
wrong filename or an incorrectly spelled
filename, you must press ABREAK to exit LINK,
then reinvoke LINK and start over. If the error has
been typed, but not entered, you may delete the
erroneous characters on that line only.

Method 2, LINK filenames|[/switches:]:

Enter:

where:

LINK object-list,runfile,listfile,lib-list[/switch . . .]

The entries following LINK are responses to the
command prompts. The entry fields for the differ-
ent prompts must be separated by commas.

object-list is a list of object modules, separated by
plus signs.

runfile is the name of the file to receive the executa-
ble output.

listfile is the name of the file to receive the list-
ing.

6-18

DOS

lib-list is a list of library modules to be searched.

/switch are optional switches, which may be
placed following any of the response entries (just
before any of the commas or after the lib-list, as
shown).

To select the default for a field, simply enter a
second comma without spaces in between (see the

example below).

Example:

LINK FUN+TEXT+TABLE+CARE/P/M,,FUNLIST, COBLIB.LIB

This example causes LINK to be loaded, then
causes the object modules FUN.OBJ, TEXT.OB]J,
TABLE.OBJ, and CARE.OBJ to be loaded. LINK
then pauses (caused by the /P switch). When you
press any key, LINK links the object modules,
produces a global symbol map (the /M switch),
defaults to FUN.EXE run file, creates a list file
named FUNLIST.MAP, and searches the library
file COBLIB.LIB.

Method 3, LINK filespec:

Enter:

where:

LINK filespec

filespec is the name of a response file. A response
file contains answers to the LINK prompts (shown
under method 1 for invoking), and may also con-
tain any of the switches. Method 3 permits you to
conduct the LINK session without interactive (di-
rect) responses to the LINK prompts.

Chapter 6 6-19

NOTE: Before using method 3 to invoke LINK, you
must first create the response file.

A response file has text lines, one for each prompt.
Responses must appear in the same order as the
command prompts appear.

Use switches and command characters in the re-
sponse file in the same way as they are used for
responses entered on the keyboard.

"Nhen the LINK session begins, each prompt is
displayed in turn with the responses from the
response file. The response file must contain valid
responses for all the prompts, either in the form of
filenames, the semicolon command character, or
when LINK prompts for a response not found in
the response file, it waits for a keyboard entry.
When a legal response has been entered, LINK
continues the link session.

Example:

FUN TEXT TABLE P/M
FUN

FUNLIST

COBLIB.LIB

This response file causes LINK to load the four
object modules. LINK pauses before creating and
producing a public symbol map to permit you to

exchange diskettes (see discussion under
/PAUSE).

When you press any key, the output files will be
named FUN.EXE and FUNLIST.MAP. LINK will

search the library file COBLIB.LIB, and will use
the default settings for the flags.

6-20 DOS

6-5. ERROR MESSAGES

All errors cause the link session to abort. Therefore, after the cause is
found and corrected, LINK must be rerun.

Error Message: ATTEMPT TO ACCESS DATA OUTSIDE OF SEG-
MENT BOUNDS, POSSIBLY BAD OBJECT MOD-
ULE

Cause: Probably a bad object file.

Error Message: BAD NUMERIC PARAMETER

Cause: Numeric value not in digits.

Error Message: CANNOT OPEN TEMPORARY FILE

Cause: LINK is unable to create the file VM.TMP because
the diskette directory is full.

Cure: Insert a new diskette. Do not change the diskette
that will receive the list. MAP file.

Error Message: ERROR: DUP RECORD TOO COMPLEX

Cause: DUP record in assembly language module is too
complex.
Cure: Simplify DUP record in assembly language pro-
- gram.

Error Message: ERROR: FIXUP OFFSET EXCEEDS FIELD WIDTH

Cause: An assembly language instruction refers to an
address with a short instruction instead of a long _
instruction.

Cure: Edit assembly language source and reassemble.

Error Message:

Cause:

Error Message:

Cause:

Error Message:

Cause:

Error Message:

Cause:

Error Message:

Cure:

Error Message:

Comment:

Error Message:

Cause:

Error Message:

Comment:

Chapter 6 6-21

INPUT FILE READ ERROR
Probably a bad obiject file.
INVALID OBJECT MODULE

Object module(s) incorrectly formed or incomplete
(as when assembly was stopped in the middle).

SYMBOL DEFINED MORE THAN ONCE

LINK found two or more modules that define a
single symbol name.

PROGRAM SIZE OR NUMBER OF SEGMENTS
EXCEEDS CAPACITY OF LINKER

The total size may not exceed 384 Kbytes and the
number of segments may not exceed 255.

REQUESTED STACK SIZE EXCEEDS 64K

Specify a size < or = 64 Kbytes with the /STACK
switch.

SEGMENT SIZE EXCEEDS 64K
64 Kbytes is the addressing system limit.

SYMBOL TABLE CAPACITY EXCEEDED

Too many long names entered, exceeding approxi-
mately 25 Kbytes.

TOO MANY EXTERNAL SYMBOLS IN ONE MOD-
ULE

The limit is 256 external symbols per module.

6-22 DOS

Error Message:

Comment:

Error Message:

Comment:

Error Message:

Comment:

Error Message:

Comment:

Error Message:

Cause:

Error Message:

Cause:

Error Message:

Cause:

Error Message:

Cause:

TOO MANY GROUPS

The limit is 10 groups.

TOO MANY LIBRARIES SPECIFIED
The limit is eight.

TOO MANY PUBLIC SYMBOLS

The limit is 1024.

TOO MANY SEGMENTS OR CLASSES

The limit is 256 (segments and classes takentogeth-
er).

UNRESOLVED EXTERNALS: list

The external symbols listed have no defining mod- -
ule among the modules or libraries files specified.

VM READ ERROR

A diskette problem; not LINK-caused.

WARNING: NO STACK SEGMENT

None of the object modules specified contains a
statement allocating stack space, but you entered

the /STACK switch.

WARNING: SEGMENT OF ABSOLUTE OR UN-
KNOWN TYPE

A bad object module or an attempt to link modules
LINK cannot handle (for example, an absolute
object module).

Error Message:

Cause:

Error Message:

Cause:

Chapter 6 6-23

WRITE ERROR IN TMP FILE

No more diskette space remaining to expand
VM.TMP file.

WRITE ERROR ON RUN FILE

Usually, not enough diskette space for run file.

Appendix A A-1

DOS FILE CONTROL BLOCK (FCB)

DEFINITION

The DOS file control block (FCB) is defined as follows:

Byte 0

Bytes 1-8

Bytes 9-11

Bytes 12-13

Bytes 14-15

Bytes 16-19

Drive code. The drive codes are specified by 0=
default drive, 1=drive A:, and 2=drive B..

Filename. If the filename consists of fewer than
eight characters, the name must be left-justified
with trailing blanks.

Extension to filename. If the extension is fewer than
three characters, it must be left-justified with trail-

ing blanks. The extension can also consist of all
blanks.

Current block (extent). This word (low byte first)
specifies the current block of 128 records, at the
start of the file, in which sequential disk reads and
writes occur. If zero, then the first block of the file is
being accessed; if one, then the second block of the
file is being accessed, and so on. Combined with the
current record field (byte 32), a particular logical
record is identified.

Size of the record with which the user wishes to
work. This word may be filled immediately after
opening the file if the default logical record size
(128 bytes) is not desired. The OPEN and CREATE
functions set this field to 128; it is also changed to
128 if a READ or WRITE is attempted with the field
set to zero.

File size. This is the current size, in bytes, of the
file. It may be read by user programs, but must not
be written by them.

A-2 DOS

Bytes 20-21

Bytes 22-23

Bytes 24-31

Byte 32

Bytes 33-36

Date. This is normally the date of the last WRITE to
the file. It is set by all disk WRITE and CREATE
operations to today’s date. It is set by OPEN to the

date recorded in the disk directory for the file. User

programs may modify this field after writing to a file
(but before closing it) to changes the date recorded
in the disk directory.

The format of this 16-bit field is as follows: bits 0-4,
day of the month; bits 5-8, month of the year; bits
9-15, the year minus 1980. All zeros mean no date.

Time. Similar to date, above. The format is bits 0-4,
seconds; bits 5-10, minutes; bits 11-15, hours.

Reserved for DOS.

Current record. This identifies the record within the
current block of 128 records that are accessed with
a sequential READ or WRITE function. See current
block, bytes 12-13.

Random record. This field must only be set if the
file is to be accessed with a random READ or
WRITE function. If the record size is greater than or
equal to 64 bytes, only the first three bytes are used
as a 24-bit number. This represents the position in
the file of a record. If the record size is less than 64
bytes, all four bytes are used as a 32-bit number for
the same purpose. This field is large enough to
address any byte in a file of the maximum size, 230
bytes.

The Extended FCB

The extended FCB is a special format used to search for files in the
disk directory with special attributes. It consists of seven bytes in
front of a normal FCB, formatted as follows:

FCB-7

FCB-6 - FCB-2

FCB-1

Appendix A A-3

Flag. FF hex is placed here to signal an extended
FCB.

Reserved.

Attribute byte. If bit 1 = 1, hidden files are included
in directory searches. If bit 2 = 1, system files are
included in directory searches.

Any reference to an FCB in the description of DOS
function calls, whether opened or unopened, may
use either a normal FCB or an extended FCB. A
normal FCB has the same effect as an extended FCB
with the attribute byte set to zero.

Appendix B B-1

DOS INTERRUPTS AND FUNCTION

CALLS

Interrupts

DOS reserves interrupt types 20 to 3F hex for its use. This means
absolute locations 80 to FF hex are the transfer address storage
locations reserved by DOS. The defined interrupts (with all values in
hex) are as follows:

20

21

22

23

Program terminate. This is the normal way to exit a program.
This vector transfers to the logic in the DOS for restoration of
N"BREAK exit addresses to the values they had on entry to
the program. All file buffers are flushed to disk. All files that
have changed in length should have been closed (see func-
tion call 10 hex) prior to issuing this interrupt. If the
changed file was not closed, its length will not be recorded
correctly in the directory. When this interrupt is executed,
CS must point to the 100H parameter area.

Function request. See the Function Requests section.

Terminate address. The address represented by this inter-
rupt (88-8B hex) is the the address to which control will
transfer when the program terminates. This address is cop-
ied into low memory of the segment the program is loaded
into at the time this segment is created. If a program wishes
to execute a second program, it must set the terminate
address prior to creation of the segment that the program
will be loaded into. Otherwise, once the second program
executes, its termination would cause transfer to its host’s
termination address.

"BREAK exit address. If you type "BREAK during keyboard
input or video output, “C” will be displayed on the screen
and an interrupt type 23 hex will be executed. If the

B-2

24

DOS

ABREAK routine preserves all registers, it may end with a
return-from-interrupt instruction (IRET) to continue pro-
gram execution. If functions 9 or 10 (buffered input/output) -
were being executed, then I/O will continue from the start of

the line. When the interrupt occurs, all registers are set to the
values that they had when the original call to DOS was
made. There are no restrictions on what the “"BREAK han-
dler is allowed to do, including DOS function calls, as long

as the registers remain unchanged if IRET is used.

If the program creates a new segment and loads in a second
program which changes the "BREAK address, the termina-
tion of the second program and the return to the first will
cause the ABREAK address to be restored to the value it had
prior to the execution of the second program.

Fatal error abort vector. When a fatal error occurs within
DOS, control is transferred with an INT 24H. On entry to the
error handler, AH will have its bit 7=0 if the error was a hard

disk error (probably the most common occurrence); bit 7=1,
if it is not a hard disk error. If it is a hard disk error, bits 0-2
include the following: '

Bit 0 is 0 if read; 1, if write.

Bit 2: Bit 1: Affected Disk Area:

0 0 Reserved Area

0 1 File Allocation Table
1 0 Directory

1 1 Data Area

AL, CX, DX, and DS:BX will be setup to perform a retry of
the transfer with INT 25H or INT 26H (below). DI will have a
16-bit error code returned by the hardware.

Appendix B B-3

The values returned are:

0 Write Protect

2 Disk Not Ready

4 Data Error

6 Seek Error

8 Sector Not Found

A Write Fault

C General Disk Failure

The registers will be set up for a BIOS disk call and the
returned code will be in the lower half of the DI register with
the upper half undefined. The user stack will look as follows
from top to bottom:

IP Registers such that if an IRET is executed
CS the DOS will respond according to (AL)
FLAGS as follows:

(AL)=0 Ignore the Error

(AL)=1 Retry the Operation
(AL)=2 Abort the Program

% CAUTION* * *

If the =1 option is used, stack DS, BX, CX, and DX must not
be used.

AX User Registers at the Time of Request
BX
CX

DX

25

DOS

SI

DI

BP

DS

ES

IP The Interrupt From the User to DOS
CS

FLAGS

Currently, the only error possible when AH bit 7=1 is a bad
memory image of the file allocation table.

Absolute disk read. This transfers control directly to the
DOS BIOS. Upon return, the original flags are still on the
stack (put there by the INT instruction). This is necessary
because return information is passed back in the flags. Be
sure to pop the stack to prevent uncontrolled growth. For
this entry point, records and sectors are the same size. The
request is as follows:

(AL) Drive Number (0=A; 1=B)

(CX) Number of Sectors to Read

(DX) Beginning Logical Record Number
(DS:BX) Transfer Address

The number of records specified are transferred between the

given drive and the transfer address. Logical record numbers

are obtained by numbering each sector sequentially, starting

26

27

Appendix B B-5

from zero and continuing across track boundaries. For exam-
ple, logical record number 0 is track 0 sector 1; whereas
logical record number 12 hex is track 2 sector 3.

All registers except for the segment registers are destroyed by
this call. If the transfer is successful, the carry flag (CF) is
zero. If the transfer is not successful, CF=1 and (AL) is
indicate the error as follows:

Return (Hex): Description:

80 Attachment Failed to Respond.

40 Seek Operation Failed.

20 Controller Failure.

10 Bad CRC on Diskette Read.

08 DMA Over-Run on Operation.

04 Requested Sector Not Found.

03 Write Attempt on Write-Protected Diskette.
02 Address Mark Not Found.

Absolute disk write. This vector is the counterpart to inter-
rupt 25 above. Except for the fact that this is a write, the
description above applies.

Terminate, but stay resident. This vector is used by programs
which are to remain resident when COMMAND regains
control. Such a program is loaded as an executing COM file
by COMMAND. After it has initialized itself, it must set DX
to its last address plus one in the segment it is executing in,
then execute an interrupt 27H. COMMAND will then treat
the program as an extension of DOS, and the program will
not be overlaid when other programs are executed.

Function Requests

The user requests a function by placing a function number in the AH
register, supplying additional information in other registers as
necessary for the specific function, and then executing an interrupt

B-6 DOS

type 21 hex. When DOS takes control, it switches to an internal
stack. User registers, except AX, are preserved unless information is

passed back to the requester, as indicated in the specific requests.

The user stack needs to be sufficient to accommodate the interrupt
system. It is recommended that it be 80 hex, in addition to the user
needs. There is an additional mechanism provided for programs that
conform to CP/M calling conventions. The function number is
placed in the CL register, other registers are set as normal according
to the function specification, and an intrasegment call is made to
location 5 in the current code segment. This method is only available
to functions which do not pass a parameter in AL and whose
numbers are equal to or less than 36. Register AX is always destroyed
if this mechanism is used; otherwise, it is the same as normal
function requests. The functions are as follows with all values in
hex:

0 Program terminate. The terminate and ~BREAK exit ad-
dresses are restored to the values they had on entry to the
terminating program. All file buffers are flushed, but files

which have been changed in length, but not closed, will not -

be recorded properly in the disk directory. Control transfers
to the terminate address.

1 Keyboard input. Waits for a character to be typed at the
keyboard, then echoes the character to the video display and
returns it in AL. The character is checked for a ~"BREAK. If

this key is detected, an interrupt 23 hex will be executed.

2 Video output. The character in DL is output to the video
display. If a “"BREAK is detected after the output an inter-
rupt, 23 hex is executed.

3 Auxiliary input. Waits for a character from the auxiliary
input device, then returns that character in AL.

4 Auxiliary output. The character in DL is output to the
auxiliary device.

T —

Appendix B B-7

Printer output. The character in DL is output to the printer.

Direct console I/O. If DL is FF hex, the AL returns the
keyboard input character, if one is ready; otherwise, it
returns 00. If DL is not FF hex, then DL is assumed to have a
valid character which is output to the video display.

Direct console input. Waits for a character to be typed at the
keyboard, then returns the character in AL. As with function
6, no checks are made on the character.

Console input without echo. This function is identical to
function 1, except that the key is not echoed.

Print string. On entry, DS:DX must point to a character string
in memory terminated by a $ (24 hex). Each character in the
string is output to the video display in the same form as
function 2.

Buffered keyboard input. On entry, DS:DX points to an input
buffer. The first byte specifies the number of characters the
buffer can hold. The first byte cannot be zero. Characters are
read from the keyboard and placed in the buffer beginning at
the third byte. Reading the keyboard and filling the buffer
continues until ENTER is pressed. If the buffer fills to one
less than the maximum, then additional keyboard input is
ignored until ENTER is pressed. The second byte of the
buffer is set to the number of characters received, excluding
the carriage return (0D hex) which is always the last charac-
ter.

Check keyboard status. If a character is available from the
keyboard, AL will be FF hex; otherwise, AL will be 00.

Character input with buffer flush. First the keyboard type-
ahead buffer is emptied. Then if AL is 1, 6, 7, 8, or 0A hex,
the corresponding DOS input function is executed. If AL is
not one of these values, no further operation is done, and AL
returns 00.

B-8

10

DOS

Disk reset. Flushes all file buffers. Unclosed files that have
been changed in size will not be properly recorded in the
disk directory until they are closed. It is not necessary to call
this function before a disk change if all files already written
have been closed.

Select disk. The drive specified in DL (0=A, 1=B, and so on)
is selected as the default disk. The number of drives is
returned in AL.

Open file. On entry, DS:DX points to an unopened file
control block (FCB). The disk directory is searched for the
named file and AL returns FF hex if it is not found. If it is

found, AL will return a 00 and the FCB is filled as fol-
lows:

If the drive code was 0 (default disk), it is changed to actual
disk used (A=1, B=2, and so on). This allows changing the
default disk without interfering with subsequent operations
on this file. The high byte of the current block field is set to
zero. The size of the record to be worked with (FCB bytes E-F
hex) is set to the system default of 80 hex. The size of the file
and the time and date are set in the FCB from information
obtained from the directory.

It is your responsibility to set the record size (FCB bytes E-F)
to the size you wish to think of the file in terms of, if the
default 80 hex is not appropriate. It is also the your responsi-

bility to set the random record field and/or current block and
record fields.

Close file. This function must be called after file writes to
ensure that all directory information is updated. On entry,
DS:DX points to an opened FCB. The disk directory is
searched, and if the file is found, its position is compared
with that kept in the FCB. If the file is not found in the
directory, it is assumed the disk has been changed and AL
returns FF hex. Otherwise, the directory is updated to reflect
the status in the FCB and AL returns 00.

/,.-—-.H\\

Appendix B B-9

Search for the first entry. On entry, DS:DX points to an
unopened FCB. The disk directory is searched for the first
matching name (the name can have 7s, indicating any letter
matched) and if none are found, AL returns FF hex. Other-
wise, locations at the disk transfer address are set as fol-
lows:

1. If the FCB provided for searching is an extended FCB,
then the first byte is set to FF hex, then 5 bytes of zeros,
then the attribute byte from the search FCB, then the
drive number used (A=1, B=2, and so on), and then the
32 bytes of the directory entry. Thus the disk transfer
address contains a valid unopened extended FCB with
the same search attributes as the search FCB.

2. If the FCB provided for searching was a normal FCB,
then the first byte is set to the drive number used (A=1, B=2,
and so on), and the next 32 bytes contain the matching
directory entry. Thus, the disk transfer address contains a
valid unopened normal FCB.

Directory entries are formatted as follows:

Location: Bytes: Description:
0 11 Filename and extension.
11 1 Attributes. Bits 1 or 2
make the file hidden.
12 10 Reserved.
22 2 Time.
Bits 0-4 = secs*2
5-10 = min
11-15 = hrs
24 2 Date.
Bits 0-4 = day
5-8 = month
_ 9-15 = year
26 2 First allocation unit.
28 4 File size, in bytes (30

bits maximum).

B-10

12

13

14

15

16

DOS

Search for the next entry. After function 11 has been called
and has found a match, function 12 may be called to find the

next match to an ambiguous request (?s in the search -

filename). Both inputs and outputs are are the same as
function 11. The reserved area of the FCB keeps information

necessary for continuing the search, so it must not be
modified.

Delete file. On entry, DS:DX points to an unopened FCB. All
matching directory entries are deleted. If no directory entries
match, AL returns FF; otherwise, AL returns 00.

Sequential read. On entry, DS:DX points to an opened FCB.
The record addressed by the current block (FCB bytes C-D)
and the current record (FCB byte 1F) is loaded at the disk
transfer address, then the record address is incremented. If
end-of-file is encountered, AL returns either 01 or 03. A
return of 01 indicates no data in the record, 03 indicates a
partial record is read and filled out with zeros. A return of 02
means there is not enough room in the disk transfer segment
to read one record, so the transfer is aborted. AL returns 00 if
the transfer is completed successfully.

Sequential write. On entry, DS:DX points to an opened FCB.
The record addressed by the current block and current
record fields is written from the disk transfer address (or, in
the case of records less than sector sizes, it is buffered-up for
an eventual write when a sector-worth of data is accumulat-
ed). The record address is then incremented. If the disk is
full, AL returns with a 01. A return of 02 means there is not
enough room in the disk transfer segment to write one
record, so the transfer is aborted. AL returns 00 if the transfer
is completed successfully.

Create file. On entry, DS:DX points to an unopened FCB. The
disk directory is searched for an empty entry, and AL returns
FF if none is found. Otherwise, the entry is initialized to a
zero-length file, the file is opened (see function F), and AL
returns 00.

17

18

19

1A

1B

1C-20

21

Appendix B B-11

Rename file. On entry, DS:DX points to a modified FCB
which has a drive code and file name in the usual position,
and a second file name starting six bytes after the first
(DS:DX+11 hex) in what is normally a reserved area. Every
matching occurrence of the first is changed to the second
(with the restriction that two files cannot have the exact
same name and extension). If ?s appear in the second name,
then the corresponding positions in the original name will
be unchanged. AL returns FF hex if no match is found;
otherwise, AL returns 00.

Not used.

Current disk. AL returns with the code of the current default
drive (0=A, 1=B, and so on).

Set disk transfer address. The disk transfer address is set to
DS:DX. DOS will not allow disk transfers to wrap around
within the segment, nor to overflow into the next segment.

Allocation table address. On return, DS:BX points to the
allocation table for the current drive, DX has the number of
allocation units, AL has the number of records per allocation
unit, and CX has the size of the physical sector. At
DS:[BX-1], the byte before the allocation table, is the dirty
byte for the table. If set to 01, it means the table has been
modified and must be written back to disk. If 00, the table is
not modified. Any programs which get the address and
directly modify the table must be sure to set this byte to 01
for the changes to be recorded. This byte should never
be set to 00. Instead, perform a DISK RESET function
(#0D hex) to write the table and reset the bit.

Not used.

Random read. On entry, DS:DX points to an opened FCB.
The current block and current record are set to agree with
the random record field, then the record addressed by these
fields is loaded at the current disk transfer address. If

B-12

22

23

24

25

26

DOS

end-of-file is encountered, AL returns either 01 or 03. If 01 is
returned, no more data is available. If 03 is returned, a
partial record is available, and it is filled out with zeros. A -
return of 02 means there is not enough room in the disk
transfer segment to read one record, so the transfer is
aborted. AL returns 00 if the transfer is completed success-
fully.

Random write. On entry, DS:DX points to an opened FCB.
The current block and current record are set to agree with
the random record field, then the record addressed by these
fields is written (or, in the case of records not the same as
sector sizes, it is buffered) from the disk transfer address. If
the disk is full, AL returns 01. A return of 02 means there is
not enough room in the disk transfer segment to write one
record, so the transfer is aborted. AL returns 00 if the transfer
is completed successfully.

File size. On entry, DS:DX points to an unopened FCB. The
disk directory is searched for the first matching entry and if -
none is found, AL returns FF. Otherwise, the random record
field is set with the size of the file (in terms of the record size
field rounded up) and AL returns 00.

Set random record field. On entry, DS:DX points to an
opened FCB. This function sets the random record field to
the same file address as the current block and record fields.

Set vector. The interrupt type specified in AL is set to the
4-byte address DS:DX.

Create a new program segment. On entry, DX has a segment
number at which to set up a new program segment. The
entire 100 hex area at location zero in the current program
segment is copied into location zero in the new program
segment. The memory size information at location 6 is
updated and the current termination and ~BREAK exit

addresses are saved in the new program segment, starting at
0A hex.

27

28

29

Appendix B B-13

Random block read. On entry, DS:DX points to an opened
FCB, and CX contains a record count that must not be zero.
The specified number of records (in terms of the record size
field) are read from the file address specified by the random
record field into the disk transfer address. If end-of-file is
reached before all records have been read, AL returns either
01 or 03. A return of 01 indicates end-of-file and the last
record is complete; a 03 indicates the last record is a partial
record. If wrap-around above address FFFF hex in the disk
transfer segment occurs, as many records as possible are
read and AL returns 02. If all records are read successfully,
AL returns 00. In any case, CX returns with the actual
number of records read, and the random record field and the
current block/record fields are set to address the next record.

Random block write. Essentially, the same as function 27
above, except for writing and a write-protect indication. If
there is insufficient space on the disk, AL returns 01 and no
records are written. If CX is zero upon entry, no records are
written, but the file is set to the length specified by the
random record field, whether longer or shorter than the
current file size (allocation units are released or allocated as
appropriate).

Parse file name. On entry, DS:SI points to a command line to
parse, and ES:DI points to a portion of memory to be filled in
with an unopened FCB. Leading tabs and spaces are ignored
when scanning. If bit 0 of AL is equal to 1 on entry, then at
most one leading file name separator will be ignored, along
with any trailing tabs and spaces. The four filename separa-
tors are:

If bit 0 of AL is equal to 1, then all parsing stops if a separator
is encountered. The command line is parsed for a file name
of the form d:filename.ext, and if found, a corresponding
unopened FCB is created at ES:DI. The entry value of AL bits
1, 2, and 3 determine what to do if the drive, filename, or

B-14

2A

2B

DOS

extension, are missing. In each case, if the bit is a zero and
the field is not present on the command line, then the FCB is
filled with a fixed value (0, meaning the default drive for the
drive field ; all blanks for the filename and extension fields).
If the bit is a 1, and the field is not present on the command
line, then that field in the destination FCB at ES:DI is left
unchanged. If an asterisk (*) appears in the filename or
extension, then all remaining characters in the name or
extension are set to ?.

The following characters are illegal within DOS file specifi-
cations:

L]+ =,

Control characters and spaces also may not be given as
elements of file specifications. If any of these characters are
encountered while parsing, or the period (.) or colon (:) is
found in an invalid position, then parsing stops at that

point. i

If either ? or * appears in the filename or extension, then AL
returns 01; otherwise, it returns 00. DS:SI will return point-
ing to the first character after the filename.

Get date. Returns the date in CX:DX. CX has the year, DH has
the month (1=Jan, 2=Feb, and so on), and DL has the day. If
the time-of-day clock rolls over to the next day, the date will
be adjusted accordingly, taking into account the number of
days in each month and leap years.

Set date. On entry, CX:DX must have a valid date in the same
format as returned by function 2A above. If the date is
indeed valid and the set operation is successful, then AL
returns 00. If the date is not valid, then AL returns FF.

2C

2D

2E

Appendix B B-15

Get time. Returns with time-of-day in CX:DX. Time is
actually represented as four 8-bit binary quantities, as fol-
lows: CH has the hours (0-23), CL has minutes (0-59), DH has
seconds (0-59), and DL has hundredths of seconds (0-99).
This format is easily converted to a printable form yet can
also be calculated upon (for example, subtracting two times).

Set time. On entry, CX:DX has time in the same format as
returned by function 2C above. If any component of the time
is not valid, the set operation is aborted and AL returns FF. If
the time is valid, AL returns 00.

Set/reset verify flag. On entry, DL must be 0 and AL has the
verify flag: 0 = no verify; 1 = verify after write. This flag is
simply passed to the I/O system on each write, so its exact
meaning is interpreted there.

Appendix C C-1

DISK ERRORS

If a disk error occurs at any time during any command or program,
DOS retries the operation three times. If the operation cannot be
completed successfully, DOS returns an error message in the follow-
ing format:

type ERROR WHILE I/O action ON DRIVE d:
Abort, Ignore, Retry: _

In this message, type may be one of the following:

Write Protect
Not Ready

Seek

Data

Sector Not Found
Write Fault

Disk

The I/O action may be either of the following:

Reading
Writing

The drive d: indicates the drive in which the error has occurred.
DOS waits entry of one of the following responses:

A Abort. Terminates the program requesting the disk read or
write.

I Ignore. Ignores the bad sector and pretends the error did not
OCCUT.

R Retry. Repeats the operation. This response is particularly
useful if the operator has corrected the error (such as with Not
Ready or Write Protect).

C-2 DOS

Usually, you will want to attempt recovery by entering responses in
the order:

R To try again.
A To terminate the program and try a new diskette.

One other error message might be related to faulty disk read or
write:

FILE ALLOCATION TABLE BAD FOR DRIVE d:

This message means that the copy in memory of one of the allocation
tables has pointers to nonexistent blocks. Possibly, the diskette was
not formatted before use.

R,

Appendix D D-1

INDEX

A
ADOTt . . o e e e e C-1
A TOEX B BAT . < o« socvnnsomas smmie s smm 68 o mme e smmnsns 3-10

B
batch processing. i e 3-10

C
CHKINBK cosinnmsinms iismmiises iiamd s ssnbadsss 3-13
COMMAND.COM. . .ot e e e e e e e e e e e e 1-4

~ commands

LS nssar apuss & PRcE NOSSE SaOEEE & & Esary sl e 3-13
DY 6 650 5.8 R0 5.6 50006 65 w56 m dim e n B b & s § e s e s 3-18
DA E. . i e e e e e e e e e 3-24
DB o cor s susnesmms cvmaE s pRNES FENE LS FEE & B nmed iy 3-26
I v inss veEE NEB I BHEE LNERE S HDR A ORGS0 3-27
BIBIEEIORIP 5 6. 56 5 5.5 6 5 50505 08 = o o sl 1 5 ot it 1o sl a4 3-30
DISKCOPY ..ttt e e e e 3-33
ERASE o vumns onmasomms s s 9mas s aoesssssssinesdsn 3-36
BXEIBIN . ¢ s penssdnm aionns i LEEE LLERE LS ES v il Badrs s 3-37
FEIRMIAT . & o cmis oo 5o oim o meomsmiom o B iim 8 oo o6 K o 3-39
MODKE . . . e e 3-42
PAUSE. . . e e 3-46
REMIBEMARK] ; csus i nans s snnas avisiands i haagssss 3-48
REN (RENAME). . . . oo e e s e e e e e e, 3-49
< - T 3-50
TIME. . o e e e e e e e e 3-51
LYPE: s ¢ sncissomes bmaes hanEsdandihadds basss mise 3-52
wild card characters 3-4
concatenation v v i e e e e e e 3-21

D-2 DOS

D
Data Error . .. oo oot e e e e e e C-1
DEBUG. . .ttt et e e e e e e e e 5-1
DEBUG commands
COMBARE [(0) « e« + womwiis mmwis s mmsi 5 msis & 5 &S § 6@ &K b4 5-8
DUMP (D) .ottt e e e e e ettt e e e e 5-9
ENTER (E). . . ittt e i e e e e e e e et e e e e e 5-12
FILL (F). o v ot oot et e e e e e e e e e e e e e 5-14
B (G, + vmoms oommn s bom e v e w6 R e b e 8 e 5-15
HEX (H) ..ttt e e e e e e e e e e et e 5-17
INPUT L) soesssenenunsn nusps snens seenrilosss Vees 5-18
LOAD (1), c.o6 5 s ami i 6 bmied s a5 Gad s s Ban s s Sams s S 5-19
MOVE (M) . ittt et e e e et et e ettt e e 5-21
NAME (N) . .ottt e e e e e s e e it e e 5-22
OUTPUT O]« . s svssivnsisnass s oams upes s wus s s smn 5-25
ERHE). s csnmiiomn e SEinmEs o aBRE 560005 5-26
REGISTER (R) . . .o oo ittt ettt e i e i it e e e e 5-27
SEARCH (S). . o v i it e e e e e e e e e e e 5-30
TRACE [T)is s s mamss cnnes smhesnaids simass wsmss ssn 5-31
IINASSEMBLE (U]. . « vcmo s cmmn v mibinim s somd 5 s 6o 5 ko4 5-33
WERITE (W) .ttt e e e e e e e e e e e 5-36
DEBUG errors
BE (Bad flag) : s sscisansisanassanmi s s e@ s s G0E 4o 9@s 3 5-38
BP (Too many breakpoints) 5-38
BR (Badregister) i i e 5-38
DF (Dotible Ba8) « « sevw s snunsnmsme nwwe s nosns sosss 5-38
device independent I/O i 1-2
direCtOTY . . ot t e e 3-27
disk errors
ADOTE conisnmnsisime i e8es s RE®s s SENEEFEEE S OEE 8508 C-1
DIAEE BT : 3 w15 5 e 0 okt B0 5 S50 8 o 0 o o i v e oo o Bl 15 mm e mfe b R 3 01 C-1
Disk EITOr. . . o oot i e e e e e C-1
File Allocation Table Bad
For DEING il sau i s nmasis nmaisoamds s asoiossdsbnnsinis C-2
(<2 Lo) - 2 C-1
Not Ready EITOTottt i i e e C-1

Appendix D D-3

Sector Not Found Error., C-1
Seek EITor. . . o oo it e e e e e e e C-1
Write Fatilt EfTor. : oovw e s 58 65 60 % 5 6 5@ 65 028 6 b bmme s o C-1
Write Protect Error0 it e C-1
drive specifiers. e 3-2
dUurnmy PEramMEEIB. o « « s v s s s 0 w563 9o 8665 EE 8 6§ K b wEe 3-11
E
BTN 5 55 5 5 6,508 5 5 5.0 okt § 6 6roien o 8 mimn o s rotst o » M e 8 svmm s 8 0w 4-1
EDLIN commands
APPEND HDes . . oo oo ot e e e e e e e e e e e e e e e e, 4-17
DELETE HTI8S ¢ s oo 4 5 556 55 55 5 5 566 6 5 8k § 5 mmom s b nms 4-18
EDIT Line. . .o oottt e e e e e e e e et et et e e 4-20
END editing. oottt e e e e 4-22
FNOENL IR v s s s unsn i 5055 BHEGSE QBB 3 5 %0 LY s 4-24
IIST TexE: cvm s s ommes s R 5 0 0@ i bR if OMdis mmme oo 4-29
QUIT EDLIN . . .ottt e e e e e e e e e e e e e 4-32
REPLACE text oot e e e e e e e 4-33
AR L E R o s s s LS R HE G AGEEE LR AL EE S A 4-36
WRITE LINes . . . oottt e 4-39

EDLIN errors
Cannot edit .BAK file

— TONARIE T 5o 5 s wam v s sms i i amm i SEs s s BRaE S 55w 4-40
Disk Full 4-41
Entry error. e e 4-41
Litis 108 LOBE, «ow s smms v omm o 4 9mm o s BHE s 5 HAMS § HwE s 4-41
No room in directory forfile 4-40
EXEfiles e, 3-1
EXE2BIN .. i e e e e 3-37
exierngl COMIDATNAE + « o s sns 55 ow.a 55 a5 s 8 BaMS &5 5E &5 57 G 3-1
F

D-4 DOS

I
IPROI8 o i s numssomes samAEFSEe i b NFRT I NG4S S ABE I POHER E 4 C-1
internal cCOMMATIAS: s i 5056 s 6 655 5 bhadd s s @nd § 5o a5 50 3-1
intralinecommands e 4-3
JOSY S . COM . .o e e e e e 1-5
L
TINK.EXE: : c56 i3 vmeinums 0o ss i i0@as ismes $nedssiens s 1-4
N
Not Ready Error. i it e C-1
P
provided software
GHEKDSKGOM. o s s sonsisanns s sess s e i wb o ienss 1-4
COMMANDICOM ..o vmes o mmns i mmns s mmes s bmsdinmess 1-4
DEBUG.COM . . .ttt ittt e e e e et e e e e i e 1-4
EDLIN.COM ..ottt et e et e et e et e e e e 1-4
EXBEZBINJCOM i ovnsisunsssmmesantnss namisnms idnss 1-4
FORMAT.COM0ittiiinetennnnnoconosannenaos 1-4
JOSY S . COM. . . ittt e e e 1-5
LINKERE ¢ vo6 s s snms s omn s 906 65606 5 8 maE s 550§ 535 550 1-4
MEDOIS.BYS scisnsiiinssionan isNsRisEns s s Sms is 9 mn 1-5
SYSCOM . v vv v s vm o s smm s o mmm s smme s amessesnesssm 1-5
R
REN (RENAME) . . .ottt it e e e et e e e 3-49

Retry

Appendix D D-5

syntax notation e 3-9
SYBLLIM : s snnssssnis san s s pmd s i@ u@s s @M S8 6HG 55T E 1-5

Wild card characters. o v v v it e e et e e et e et 3-4
Write Fault Erroro o e e e e e e e e e e C-1

Notes:

DISK OPERATING SYSTEM
REFERENCE GUIDE
COMMENTS FORM

Please assist us by answering the questions listed below. Then detach
this prepaid comments form and drop it into a mailbox. This will help

us to attain our goal, which is to provide you with documentation of
the highest quality.

CHECK v THE APPROPRIATE ANSWER: YES NO
e Is this document easy to read? [] []
* Does the text flow in a logical manner?]]
e Are the directions easy to follow? []]
e Are the examples and syntax statements clear

and usable?]]
¢ Are the technical terms clearly defined? [] [
¢ Did you find any inconsistencies or errors in

the manual? []
e Do you feel that this document provides all the

information that you need to understand and

to use the Disk Operating System? []]

COMMENTS:

Thank you for taking the time to assist us.

(Optional)
NAME:

ADDRESS:
CITY/STATE:
PHONE NO:

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

'BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 400 HOUSTON, TEXAS USA

POSTAGE WILL BE PAID BY ADDRESSEE

COMPAQ Computer Corporation
12330 Perry Road
Houston, Texas 77070

Sruet aiay p|o4

ade | 3|deis jou op ased|d ade |

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124
	page 125
	page 126
	page 127
	page 128
	page 129
	page 130
	page 131
	page 132
	page 133
	page 134
	page 135
	page 136
	page 137
	page 138
	page 139
	page 140
	page 141
	page 142
	page 143
	page 144
	page 145
	page 146
	page 147
	page 148
	page 149
	page 150
	page 151
	page 152
	page 153
	page 154
	page 155
	page 156
	page 157
	page 158
	page 159
	page 160
	page 161
	page 162
	page 163
	page 164
	page 165
	page 166
	page 167
	page 168
	page 169
	page 170
	page 171
	page 172
	page 173
	page 174
	page 175
	page 176
	page 177
	page 178
	page 179
	page 180
	page 181
	page 182
	page 183
	page 184
	page 185
	page 186
	page 187
	page 188
	page 189
	page 190
	page 191
	page 192
	page 193
	page 194
	page 195
	page 196
	page 197
	page 198
	page 199
	page 200
	page 201
	page 202
	page 203
	page 204
	page 205
	page 206
	page 207
	page 208
	page 209

